
Florida Institute of Cyber Security (FICS) Research

USENIX Security ’18, Baltimore, MD
Aug 15, 2018

ATtention Spanned: Comprehensive
Vulnerability Analysis of AT Commands

Within the Android Ecosystem
Dave (Jing) Tian*, Grant Hernandez*, Joseph Choi*, Vanessa Frost*, Christie Ruales*,

Patrick Traynor*, Hayawardh Vijayakumar**, Lee Harrison**,
Amir Rahmati**^, Michael Grace**, Kevin Butler*

*University of Florida, Gainesville, FL
**Samsung Research America (SRA), Mountain View, CA

^Stony Brook University, Stony Brook, NY

Florida Institute of Cyber Security (FICS) Research 2

Those BBS Days…

Florida Institute of Cyber Security (FICS) Research 3

• AT commands are not new…

Motivation

• The prevalence is unclear
• The functionality is unclear
• The security impact is unclear

• A systematic study of AT commands within
the Android ecosystem

CHARGE YOUR DEVICE WITH
THE LATEST MALWARE

André Pereira, Manuel E. Correia and Pedro Brandão

• How to find them?
• How to test them?
• How to abuse them?

Florida Institute of Cyber Security (FICS) Research 4

• Hayes

• ATD

AT Commands

A T + E X E C
A T + R E A D ?
A T + T E S T = ?
A T + C S E T = 0 , 1 , “ p a r a m ”

Modem
Attention

Extended Command
Namespace (+, %, …)

Command
Name Optional Parameters

Figure 3: A colorized representation of AT command syn-
tax.

1 (?:[^a-zA -Z0 -9]|^) # Left of the AT must NOT
2 # be a letter or number
3
4 (?P<cmd > # Capture the match
5 AT[!@#$%^&*+] # Match AT[symbol]
6 [_A -Za-z0 -9]{3 ,} # Match the name and
7)
8
9 (?P<arg > # Capture the match

10 \? | # Match AT+READ?
11 # Match AT+CSET =0,1," param"
12 =[" ’+=;%,?A-Za-z0 -9]+ |
13 =\? | # Match AT+TEST=?
14 = # Match a blank parameter
15)? # Match AT+EXEC

Figure 4: The regular expression developed to match ex-
tended AT commands. The regular expression syntax is
from Python. All white space is ignored. Note that the
regex is matching both text files and binary data.

Filtering Lines containing AT commands as discovered
using strings and grep are what we call coarse-grained
matches. This means any matching lines may be invalid
or spurious. We define an invalid match to mean not con-
forming to the expected patterns of an AT command. Fig-
ure 3 shows the syntax of an AT command, with different
colors describing the modem attention string, command
delimiter, command name, and parameter string. It also
shows the four primary uses of AT commands: executing
an action, reading from a parameter, testing for allowed
parameters, and setting a parameter. In practice, what
these types actually do is left up to the implementation.
Regardless, these four types are the standard syntax pat-
terns we aim to match.

To capture these four types, we develop a regular ex-
pression as shown in Figure 4 to match their syntax. Line
1 of the RE will ignore any matches that are not at the
beginning of the matched line and have a letter or num-
ber immediately to the left of the “AT” directive. Line
4-7 will capture and match the AT directive, the extended
command namespace symbol, and the command name,
which must be greater than or equal to three characters
and only contain letters, numbers and underscores. Lines
9-15 will capture any optional argument to the command.

Specification Usage # of AT Commands

Hayes [16, 17] Basic 46
ITU-T V.250 [35] Application 61

ETSI GSM 07.05 [25] SMS 20
ETSI TS 100 916 [26] GSM 95

Total (unique) 222

Table 2: Additional AT commands were manually col-
lected from several specification documents, for a total of
222 unique AT commands.

Line 10 will match a read variant, line 12 a set variant with
a non-zero amount of numeric parameters, string param-
eters, and nested AT commands separated by semicolons
(e.g., AT+CMD=1,10,"var";+OTHER=1,2). Line 13 will
match the test variant and finally line 14 will match an
empty parameter.

Despite this more restrictive regular expression, certain
commands such as AT$L2f, AT+ baT, and AT^tAT com-
monly end up in the AT command database. Upon testing
and visual inspection, we define commands of this appear-
ance to be spurious matches. These false positive matches
polluted our analytics and cause a large increase in unique
commands, which in turn slows down our testing. By
observing the make-up of these invalid commands, we
developed a simple heuristic to score commands based
off of three features: the command length, the character
classes present, and the valid to invalid command ratio of
the file in which it was discovered. For more details on
this heuristic visit Section A.2.

In summary, the regular expression helped us discard
33.2% of all 1,392,871 processed lines across all images.
The heuristic eliminated an additional 2.4% of all pro-
cessed lines and brought the total unique AT command
count down from 4,654 to 3,500, a 24.8% reduction. With
less invalid commands matched, the signal to noise ratio
of database increased and our AT command testing was
faster.

Generating a DB Once we have filtered and stored
every AT command along with any found parameters,
we generate plain-text DB files for input into our test-
ing framework. We create DB files containing ev-
ery unique command and parameter and vendor-specific
ATDB files. These give us different test profiles for phone
testing. In addition, we also manually collect AT com-
mands from multiple specifications, as shown in Table 2.
Many of these commands are not extended AT commands
(AT[symbol]) and would not be matched during our fil-
tering step. Also, these AT commands may not be found
inside the Android firmware, but should be supported by
baseband processors meeting the public specifications.
Thus, we include these in our database.

• ITU-T/ETSI

• AT+CMGS

• Android Ecosystem

• AT+USBDEBUG

Florida Institute of Cyber Security (FICS) Research 5

How to find them?

build.
prop
build.
prop atcmdsAT

cmds

LG
HTC

init.usbinit.usb

Samsung

Image
1 Image

2

Image
N

Image
unzip
unpack
decrypt

grep
“AT” AT DB

parse
filter
assign

2. Extract 3. Import

Mfg. Sites
Public Mirrors

1. Download/Crawl

Figure 2: A graphical depiction of our paper’s Android firmware image processing pipeline.

3.1 AT Command Extraction

We first gather Android firmware images from manufac-
turer websites and third-party hosts. For more details on
the downloading process, see Section A.3. With a corpus
of firmware images, we begin extraction and filtering for
commands. We traverse each Android firmware image
as deeply as possible, recovering unique AT commands
and parameter combinations. Additionally, we also cap-
ture build information for each image from the standard
Android build properties file, build.prop. This file pro-
vides key metadata about the image itself. We also col-
lect any USB init/pre-configuration files (e.g., init.usb.rc)
found in Android boot images to gain insight into the USB
modes supported by each firmware.

In order to find AT commands present in firmware im-
ages, we look in every file for any string containing the
regular expression AT[+*!@#$%^&]. AT commands with
a symbol immediately following the ATtention string are
known as extended AT commands. Original Equipment
Manufacturers (OEMs) are free to add any amount of ex-
tended commands to their products. We focus on solely
collecting AT extended command references within these
firmware images for later categorization and testing.

Many pieces of firmware were archived using stan-
dard formats. Vendor-specific formats included: HTC’s
.exe format, unpackable using the HTC RUU Decrypt
Tool [12]; Huawei’s update.app format, unpackable using
splitupdate [10]; LG’s .kdz/.dz format, unpackable using
LGE KDZ Utilities [7]; and Sony’s .ftf format, unpack-
able using 7-Zip. Any nested archives directly under the
top-level archive (e.g., Samsung images’ several nested
tars) are similarly unpacked.

Once all files are extracted from the archives, we pro-
cess each file according to its characteristics. For native
binaries, such as ELF, we are limited to using strings
to extract all possible strings, over which we grep for
any of our target AT prefixes. For text-based files, grep
is applied directly to catch potential AT commands. For
ZIP-like files, we unzip and traverse the directory to ex-
amine each extracted file. ZIP-like files include yaffs (un-
packed using unyaffs [13]), Lenovo’s SZB (unpacked us-
ing szbtool [11]) and Lenovo’s QSB (unpacked using a

qsb splitter [6]) formats.
If the file is a VFAT or EXT4 filesystem image (e.g.,

system.img), we mount the filesystem and traverse it
once mounted to check each contained file. Filesystem
images are not always readily mountable. They may be
single or split-apart sparse Android images, which we first
convert into EXT4 using the Android simg2img tool [9].
They may be provided as unsparse chunks, which need
to be reconstituted according to an instruction XML file
indicating start sector and number of partition sectors for
each chunk. They may otherwise be provided as sparse
Android data images (SDATs), which are converted into
EXT4 using sdat2img [8]. Sony filesystem images, in par-
ticular, may be given in SIN format, which are converted
into EXT4 using FlashTool [3].

Android filesystem partitions contain APK files, which
we decompile using dex2jar [2] and jd-cli [5] treating the
output as text files to pull AT commands from. Similarly,
we also decompile JAR files using jd-cli before extracting
AT commands from them. Any discovered ODEX files
are first disassembled using baksmali [1], after which we
look for AT commands in the assembly output. We then
reconstruct the DEX file using the assembly output with
smali and decompile it using jadx [4] before looking for
AT commands in the resulting output.

3.2 Building an AT Command Database

After AT commands are extracted from each image, we
develop a script to parse the “AT” matches. This script ap-
plies additional filtering with a more strict regular expres-
sion and uses a scoring heuristic to eliminate commands
that appear to be invalid.

For every command found, we record metadata such as
the vendor, image, and filename where it was discovered.
Additionally we find any parameters to the AT command
and store the unique combinations with the command. To
organize the data, we use MongoDB with a single top-
level document for each vendor. Each vendor has an array
of images, which in turn have Android metadata, includ-
ing, but not limited to, Android version, phone model, and
build ID. Finally, each image has a list of AT commands.

11

2018

3500

A T + E X E C
A T + R E A D ?
A T + T E S T = ?
A T + C S E T = 0 , 1 , “ p a r a m ”

Modem
Attention

Extended Command
Namespace (+, %, …)

Command
Name Optional Parameters

Figure 3: A colorized representation of AT command syn-
tax.

1 (?:[^a-zA -Z0 -9]|^) # Left of the AT must NOT
2 # be a letter or number
3
4 (?P<cmd > # Capture the match
5 AT[!@#$%^&*+] # Match AT[symbol]
6 [_A -Za-z0 -9]{3 ,} # Match the name and
7)
8
9 (?P<arg > # Capture the match

10 \? | # Match AT+READ?
11 # Match AT+CSET =0,1," param"
12 =[" ’+=;%,?A-Za-z0 -9]+ |
13 =\? | # Match AT+TEST=?
14 = # Match a blank parameter
15)? # Match AT+EXEC

Figure 4: The regular expression developed to match ex-
tended AT commands. The regular expression syntax is
from Python. All white space is ignored. Note that the
regex is matching both text files and binary data.

Filtering Lines containing AT commands as discovered
using strings and grep are what we call coarse-grained
matches. This means any matching lines may be invalid
or spurious. We define an invalid match to mean not con-
forming to the expected patterns of an AT command. Fig-
ure 3 shows the syntax of an AT command, with different
colors describing the modem attention string, command
delimiter, command name, and parameter string. It also
shows the four primary uses of AT commands: executing
an action, reading from a parameter, testing for allowed
parameters, and setting a parameter. In practice, what
these types actually do is left up to the implementation.
Regardless, these four types are the standard syntax pat-
terns we aim to match.

To capture these four types, we develop a regular ex-
pression as shown in Figure 4 to match their syntax. Line
1 of the RE will ignore any matches that are not at the
beginning of the matched line and have a letter or num-
ber immediately to the left of the “AT” directive. Line
4-7 will capture and match the AT directive, the extended
command namespace symbol, and the command name,
which must be greater than or equal to three characters
and only contain letters, numbers and underscores. Lines
9-15 will capture any optional argument to the command.

Specification Usage # of AT Commands

Hayes [16, 17] Basic 46
ITU-T V.250 [35] Application 61

ETSI GSM 07.05 [25] SMS 20
ETSI TS 100 916 [26] GSM 95

Total (unique) 222

Table 2: Additional AT commands were manually col-
lected from several specification documents, for a total of
222 unique AT commands.

Line 10 will match a read variant, line 12 a set variant with
a non-zero amount of numeric parameters, string param-
eters, and nested AT commands separated by semicolons
(e.g., AT+CMD=1,10,"var";+OTHER=1,2). Line 13 will
match the test variant and finally line 14 will match an
empty parameter.

Despite this more restrictive regular expression, certain
commands such as AT$L2f, AT+ baT, and AT^tAT com-
monly end up in the AT command database. Upon testing
and visual inspection, we define commands of this appear-
ance to be spurious matches. These false positive matches
polluted our analytics and cause a large increase in unique
commands, which in turn slows down our testing. By
observing the make-up of these invalid commands, we
developed a simple heuristic to score commands based
off of three features: the command length, the character
classes present, and the valid to invalid command ratio of
the file in which it was discovered. For more details on
this heuristic visit Section A.2.

In summary, the regular expression helped us discard
33.2% of all 1,392,871 processed lines across all images.
The heuristic eliminated an additional 2.4% of all pro-
cessed lines and brought the total unique AT command
count down from 4,654 to 3,500, a 24.8% reduction. With
less invalid commands matched, the signal to noise ratio
of database increased and our AT command testing was
faster.

Generating a DB Once we have filtered and stored
every AT command along with any found parameters,
we generate plain-text DB files for input into our test-
ing framework. We create DB files containing ev-
ery unique command and parameter and vendor-specific
ATDB files. These give us different test profiles for phone
testing. In addition, we also manually collect AT com-
mands from multiple specifications, as shown in Table 2.
Many of these commands are not extended AT commands
(AT[symbol]) and would not be matched during our fil-
tering step. Also, these AT commands may not be found
inside the Android firmware, but should be supported by
baseband processors meeting the public specifications.
Thus, we include these in our database.

A T + E X E C
A T + R E A D ?
A T + T E S T = ?
A T + C S E T = 0 , 1 , “ p a r a m ”

Modem
Attention

Extended Command
Namespace (+, %, …)

Command
Name Optional Parameters

Figure 3: A colorized representation of AT command syn-
tax.

1 (?:[^a-zA -Z0 -9]|^) # Left of the AT must NOT
2 # be a letter or number
3
4 (?P<cmd > # Capture the match
5 AT[!@#$%^&*+] # Match AT[symbol]
6 [_A -Za -z0 -9]{3 ,} # Match the name and
7)
8
9 (?P<arg > # Capture the match

10 \? | # Match AT+READ?
11 # Match AT+CSET =0,1," param"
12 =[" ’+=;%,?A-Za-z0 -9]+ |
13 =\? | # Match AT+TEST=?
14 = # Match a blank parameter
15)? # Match AT+EXEC

Figure 4: The regular expression developed to match ex-
tended AT commands. The regular expression syntax is
from Python. All white space is ignored. Note that the
regex is matching both text files and binary data.

Filtering Lines containing AT commands as discovered
using strings and grep are what we call coarse-grained
matches. This means any matching lines may be invalid
or spurious. We define an invalid match to mean not con-
forming to the expected patterns of an AT command. Fig-
ure 3 shows the syntax of an AT command, with different
colors describing the modem attention string, command
delimiter, command name, and parameter string. It also
shows the four primary uses of AT commands: executing
an action, reading from a parameter, testing for allowed
parameters, and setting a parameter. In practice, what
these types actually do is left up to the implementation.
Regardless, these four types are the standard syntax pat-
terns we aim to match.

To capture these four types, we develop a regular ex-
pression as shown in Figure 4 to match their syntax. Line
1 of the RE will ignore any matches that are not at the
beginning of the matched line and have a letter or num-
ber immediately to the left of the “AT” directive. Line
4-7 will capture and match the AT directive, the extended
command namespace symbol, and the command name,
which must be greater than or equal to three characters
and only contain letters, numbers and underscores. Lines
9-15 will capture any optional argument to the command.

Specification Usage # of AT Commands

Hayes [16, 17] Basic 46
ITU-T V.250 [35] Application 61

ETSI GSM 07.05 [25] SMS 20
ETSI TS 100 916 [26] GSM 95

Total (unique) 222

Table 2: Additional AT commands were manually col-
lected from several specification documents, for a total of
222 unique AT commands.

Line 10 will match a read variant, line 12 a set variant with
a non-zero amount of numeric parameters, string param-
eters, and nested AT commands separated by semicolons
(e.g., AT+CMD=1,10,"var";+OTHER=1,2). Line 13 will
match the test variant and finally line 14 will match an
empty parameter.

Despite this more restrictive regular expression, certain
commands such as AT$L2f, AT+ baT, and AT^tAT com-
monly end up in the AT command database. Upon testing
and visual inspection, we define commands of this appear-
ance to be spurious matches. These false positive matches
polluted our analytics and cause a large increase in unique
commands, which in turn slows down our testing. By
observing the make-up of these invalid commands, we
developed a simple heuristic to score commands based
off of three features: the command length, the character
classes present, and the valid to invalid command ratio of
the file in which it was discovered. For more details on
this heuristic visit Section A.2.

In summary, the regular expression helped us discard
33.2% of all 1,392,871 processed lines across all images.
The heuristic eliminated an additional 2.4% of all pro-
cessed lines and brought the total unique AT command
count down from 4,654 to 3,500, a 24.8% reduction. With
less invalid commands matched, the signal to noise ratio
of database increased and our AT command testing was
faster.

Generating a DB Once we have filtered and stored
every AT command along with any found parameters,
we generate plain-text DB files for input into our test-
ing framework. We create DB files containing ev-
ery unique command and parameter and vendor-specific
ATDB files. These give us different test profiles for phone
testing. In addition, we also manually collect AT com-
mands from multiple specifications, as shown in Table 2.
Many of these commands are not extended AT commands
(AT[symbol]) and would not be matched during our fil-
tering step. Also, these AT commands may not be found
inside the Android firmware, but should be supported by
baseband processors meeting the public specifications.
Thus, we include these in our database.

Florida Institute of Cyber Security (FICS) Research 6

Android Version Distribution
Other

16.7%

18.1% 6.0

17.3%

7.1

16.8%
4.4

5.1							12.8%

7.0

6.4%

5.0

11.7%

Florida Institute of Cyber Security (FICS) Research 7

ATcmd Distribution Per Vendor

2.3 4.0 4.1 4.2 4.3 4.4 5.0 5.1 6.0 7.0 7.1
AnGroiG VerVion

50

75

100

125

150

175

200

225

A7
cm

G#

Google

(a) ATcmd Distribution of Google.

2.2 2.3 4.0 4.1 4.2 4.3 4.4 5.0 5.1 6.0 7.0 7.1
Android VerVion

100

200

300

400

500

600

A7
cm

d#

6amVung

(b) ATcmd Distribution of Samsung.

4.4 5.0 5.1 6.0 7.0
AnGroLG VerVLon

200

225

250

275

300

325

350

375

A7
cm

G#

LG

(c) ATcmd Distribution of LG.

Figure 5: AT Command distribution across three major Android smartphone manufacturers.

Google ATcmd#

/vendor/lib/libsec-ril lte.so 183
/lib/libxgold-ril.so 73
/lib/libreference-ril.so 37
/lib/hw/bluetooth.default.so 23
/lib/bluez-plugin/audio.so 19

Samsung
/bin/at distributor 331
/md1rom.img 226
/app/FactoryTest CAM.apk 145
/bin/sec atd 142
/bin/engpc 140

LG
/bin/atd 354
/lib/libreference-ril.so 37
/lib/hw/bluetooth.default.so 27
/app/LGATCMDService/arm/LGATCMDService.odex 19
/app/LGBluetooth4/arm/LGBluetooth4.odex 15

Table 3: Top 5 binaries which contain the most AT com-
mands per Google, Samsung, and LG.

Samsung images besides the 7 GSM-related commands.
Surprisingly, 8 of the top 10 AT commands in LG are
non-standard (prefixed by “AT%”). Further investigation
shows them all to be vendor-specific. We extend our in-
spection to the top 20 AT commands and find the trend to
be the same – the most frequent AT commands are stan-
dard for Google, a combination of standard and home-
made for Samsung, and mainly vendor-specific for LG.
AT Command Usage Per Binary. To see where these AT
commands come from, we summarize the source of these
commands and show the top 5 binaries that contribute the
most commands for Google, Samsung, and LG. As shown
in Table 3, most of the AT commands come from the RIL
in Google. Note that some Bluetooth modules also con-
tain AT commands. For Samsung, besides the modem im-
age (md1rom.img), we could find Samsung-specific na-
tive daemons, such as at distributor. A factory test-
ing app is also listed. For LG, atd seems to be the sole
native daemon, taking care of the most AT commands.

Two LG-specific apps also appear to serve some AT com-
mands.

To gain deeper insight into how AT commands can
affect these systems, we analyzed the flow of AT com-
mands starting from the gadget serial TTY device (usu-
ally /dev/ttyGS0) to any native daemons and finally to
other devices or system applications. We analyzed the LG
G4 and the Samsung S8+ images by reading the relevant
USB init scripts and any native daemons using IDA Pro
7.0. We paired this with manual testing using the AT in-
terface while monitoring the system with logcat.

Samsung S8+. Samsung’s heavy use of AT com-
mands was confirmed through analysis of four key na-
tive daemons: ddexe, at distributor, smdexe, and
port-bridge. The “Data Distributor” ddexe opens the
primary /dev/ttyGS0 device, monitors USB for state
changes, creates a UNIX domain socket server, and routes
TTY data to clients. at distributor connects via
UNIX socket (/data/.socket stream), receives com-
mands, and either handles them itself or dispatches them
to appropriate parts of the system.

As a result of previous work (CVE-2016-4030, CVE-
2016-4031, and CVE-2016-4032), Samsung has locked
down the exposed AT interface with a command whitelist.
This whitelist is active when thero.product ship prop-
erty is set to true and limits the commands to information
gathering only. Any non-whitelisted command responds
with the generic reply of OK, even if it is invalid.

LG G4. LG follows a similar structure to handling AT
commands. Its primary daemon atd reads and writes
to the gadget serial TTY device and handles or bypasses
AT commands. Some commands are handled by a static
dispatch table within atd and may propagate throughout
the system via UNIX domain socket /dev/socket/atd.
LGATCMDService is an Android background service that
listens for and handles any incoming commands before
sending back a response. At least 89 different commands

~100

~400 ~300

Google Samsung LG

Florida Institute of Cyber Security (FICS) Research 8

• Setup

How to test them?

• Requirement

/dev/ttyACM0

• A USB connection

• A USB CDC ACM interface

Florida Institute of Cyber Security (FICS) Research 9

Android Devices Tested
Vendor USB.rc Avg. acm USB.rc Avg. diag

w/ acm Triggers w/ diag Triggers

ASUS 330 2.9 262 2.5
Google 73 5.6 496 29.2
HTC 253 14.3 253 31.3
Huawei 56 5 58 29.1
Lenovo 144 6.7 100 25.7
LG 591 1.1 693 1.0
LineageOS 168 4.4 281 15.1
Motorola 10 16 224 7.0
Samsung 581 5.4 509 19.6
Sony 56 4.7 56 21.2
ZTE 23 6.9 23 36.5

Total 2955 4.1 2285 17.3

Table 4: Per vendor counts of USB.rc files found to con-
tain acm and diag triggers, alongside the average number
of contained triggers. In total, we found 12,018 acm and
39,605 diag triggers across USB.rc files in 1,564 images.

are handled by this application and, given its extensive
system permissions, it is an interesting target. A previous
vulnerability in 2016 [49] (CVE-2016-3117) gave any ap-
plication the ability to communicate through LGATCMD-
Service to atd, allowing the phone to be bricked or sen-
sitive data to be read. Through static analysis of this
service APK, we confirmed that there were now checks
ensuring that only requests from the system user (UID
1000) would be allowed. Despite this patch, unlike Sam-
sung, LG does not whitelist AT commands, so any that are
supported by the Android system or modem are passed
through the USB interface.

USB Pre-Configuration Files. Now that we know the
prevalence of AT commands in the gathered firmware
images, we inspect the susceptibility of the images to
AT commands. We do this by looking at USB init/pre-
configuration files (e.g., init.usb.rc), referred from
here on as USB.rc files, which provide details about the
USB modes supported by the device. We were able to
extract pre-configuration files from 1,564 of the 2,018 to-
tal images, some having multiple such files (for example,
HTC images contain an average of 10).

We look for property:sys.usb.config triggers in
the pre-configuration files and discover that 864 images
(55% of the images from which USB.rc files were suc-
cessfully extracted) contain at least one USB.rc file with
triggers for ACM mode. Since enabling USB modem
functionality causes a CDC-ACM interface to be exposed,
our finding suggests that over half6 of phone firmwares
have the potential to provide modem functionality. We
also look for triggers for diagnostic mode, indicated by

6 We expect a similar prevalence of ACM mode triggers among the
remaining 454 images for which extraction of USB.rc files failed.

Device Android Ver# Modem Exposed

Samsung Galaxy Note 2 4.4.2 Y
Samsung Galaxy S7 Edge 7.0 Y
Samsung Galaxy S8 Plus 7.0 Y

LG G3 6.0 Y
LG G4 6.0 Y

HTC One 4.4.2 Y*
HTC Desire 626 5.1 N
Asus ZenPhone 2 5.0 Y (root)

Asus ZenPad 5.0.2 Y (root)
Google Nexus 5 5.1.1 Y (root)

Google Nexus 5X 6.0 Y (root)
Google Nexus 6P 7.1.1 N*

Google Pixel 7.1.1 N
Motorola Moto X 5.1 N*

Table 5: We examined 14 Android devices to find if they
expose USB modem interfaces. 6 expose the modem by
default; 4 can expose it after being rooted.

diag, which usually activated the ACM interface once en-
abled. We discover that 1,175 images (75% of the images
from which USB.rc files were extracted) contain at least
one USB.rc file with diag triggers. Our finding suggests
that even more phone firmwares (beyond those with ACM
mode triggers) have the potential to provide modem func-
tionality through alternative diag triggers.

Table 4 presents the breakdown of average acm and
diag trigger counts per vendor. Since each image may
have multiple USB.rc files, we average trigger counts over
the total number of these files from each vendor, rather
than the number of images containing USB.rc files.

4.2 Runtime Vulnerability Analysis
We first examine the prevalence of the USB modem in-
terface being exposed by different Android devices. We
look at 13 Android phones and 1 Android tablet from ma-
jor vendors. Table 5 provides an overview of these de-
vices and whether or not they expose a modem interface.
All Samsung and LG phones we tested expose a USB mo-
dem interface by default. HTC One also exposes a mo-
dem interface, but it does not accept any AT commands.
ZenPhone 2, ZenPad, and Nexus 5/5X also expose a mo-
dem interface, but not by default; their USB configuration
must be changed after rooting. Of note, Zenpad, though it
does not support mobile data at all, still exposed a modem
interface. Although neither Nexus 6P nor Moto X reveal
a modem interface during our testing, they have the po-
tential to enable a modem interface by exploiting fastboot
vulnerabilities [31].

We chose 8 devices shown in Table 6 for testing, in-
cluding all devices exposing a USB modem interface by
default, as well as 3 other devices that offer ways to en-
able such an interface. We use our AT command testing
framework to send the 3500 unique AT commands we ex-

Florida Institute of Cyber Security (FICS) Research 10

How to abuse them?
(a) ATcmd Distribution of Google. (b) ATcmd Distribution of Samsung. (c) ATcmd Distribution of LG.

Figure 5: AT Command distribution across three major Android smartphone manufacturers.

Google ATcmd#

/vendor/lib/libsec-ril lte.so 183
/lib/libxgold-ril.so 73
/lib/libreference-ril.so 37
/lib/hw/bluetooth.default.so 23
/lib/bluez-plugin/audio.so 19

Samsung
/bin/at distributor 331
/md1rom.img 226
/app/FactoryTest CAM.apk 145
/bin/sec atd 142
/bin/engpc 140

LG
/bin/atd 354
/lib/libreference-ril.so 37
/lib/hw/bluetooth.default.so 27
/app/LGATCMDService/arm/LGATCMDService.odex 19
/app/LGBluetooth4/arm/LGBluetooth4.odex 15

Table 3: Top 5 binaries which contain the most AT com-
mands per Google, Samsung, and LG.

Samsung images besides the 7 GSM-related commands.
Surprisingly, 8 of the top 10 AT commands in LG are
non-standard (prefixed by “AT%”). Further investigation
shows them all to be vendor-specific. We extend our in-
spection to the top 20 AT commands and find the trend to
be the same – the most frequent AT commands are stan-
dard for Google, a combination of standard and home-
made for Samsung, and mainly vendor-specific for LG.
AT Command Usage Per Binary. To see where these AT
commands come from, we summarize the source of these
commands and show the top 5 binaries that contribute the
most commands for Google, Samsung, and LG. As shown
in Table 3, most of the AT commands come from the RIL
in Google. Note that some Bluetooth modules also con-
tain AT commands. For Samsung, besides the modem im-
age (md1rom.img), we could find Samsung-specific na-
tive daemons, such as at distributor. A factory test-
ing app is also listed. For LG, atd seems to be the sole
native daemon, taking care of the most AT commands.

Two LG-specific apps also appear to serve some AT com-
mands.

To gain deeper insight into how AT commands can
affect these systems, we analyzed the flow of AT com-
mands starting from the gadget serial TTY device (usu-
ally /dev/ttyGS0) to any native daemons and finally to
other devices or system applications. We analyzed the LG
G4 and the Samsung S8+ images by reading the relevant
USB init scripts and any native daemons using IDA Pro
7.0. We paired this with manual testing using the AT in-
terface while monitoring the system with logcat.

Samsung S8+. Samsung’s heavy use of AT com-
mands was confirmed through analysis of four key na-
tive daemons: ddexe, at distributor, smdexe, and
port-bridge. The “Data Distributor” ddexe opens the
primary /dev/ttyGS0 device, monitors USB for state
changes, creates a UNIX domain socket server, and routes
TTY data to clients. at distributor connects via
UNIX socket (/data/.socket stream), receives com-
mands, and either handles them itself or dispatches them
to appropriate parts of the system.

As a result of previous work (CVE-2016-4030, CVE-
2016-4031, and CVE-2016-4032), Samsung has locked
down the exposed AT interface with a command whitelist.
This whitelist is active when thero.product ship prop-
erty is set to true and limits the commands to information
gathering only. Any non-whitelisted command responds
with the generic reply of OK, even if it is invalid.

LG G4. LG follows a similar structure to handling AT
commands. Its primary daemon atd reads and writes
to the gadget serial TTY device and handles or bypasses
AT commands. Some commands are handled by a static
dispatch table within atd and may propagate throughout
the system via UNIX domain socket /dev/socket/atd.
LGATCMDService is an Android background service that
listens for and handles any incoming commands before
sending back a response. At least 89 different commands

• When the reply is “OK”…

• Dynamic Analysis

• Static Analysis

Florida Institute of Cyber Security (FICS) Research 11

• AT%DLOAD
• AT+SUDDLMOD=0,0
• AT+FUS?

Firmware Flashing

• AT%MODEMRESET
• AT%RESTART

• AT%FRST
• AT+CRST=FS
• AT+FACTORST=0,0

Florida Institute of Cyber Security (FICS) Research 12

• ATD
• ATH
• ATA

Android Security Bypassing

• AT%IMEI=[param]
• AT%USB=adb
• AT%KEYLOCK=0
• AT+CKPD
• AT+CMGS
• AT+CGDATA

Florida Institute of Cyber Security (FICS) Research 13

• 34 AT commands

Sensitive Information Leaking

4.2.2 Android Security Bypassing

This section demonstrates AT commands that bypass dif-
ferent Android security mechanisms, such as lock screen,
UI notification, etc., as shown in Table 8. We were able
to make phone calls by sending an “ATD” command to
the phone. Note that this command works even if there
is a screen lock on the phone. Combined with “ATH”
and “ATA,” one can call any number, accept any incom-
ing call, and end a call via a USB connection. Note that
the ATD vulnerability on Samsung phones was reported 2
years ago [47], and it was patched. Neither our Note 2 nor
S7 Edge is able to make a call. Nevertheless, this once-
patched vulnerability reappears on the S8+. Similarly, AT
commands for managing PINs on SIM cards and connect-
ing to the Internet using mobile data were also accessi-
ble on four of the testing phones. These commands are
all standard AT commands delivered to the modem by na-
tive daemons, bypassing the Android framework. We also
find an LG-specific command that allows us to change the
IMEI, again bypassing the Android layer.

One USB debugging enabling command is found in
LG phones, together with an AT command to unlock
the screen. After USB debugging is enabled using this
AT command, there is no indication on the UI showing
USB debugging was enabled, and there is no prompt from
the UI asking for the key to be added. This shows that
the whole Android layer is bypassed without being noti-
fied when we enable USB debugging using this AT com-
mand. Commands for sending touchscreen events and
keystrokes are also discovered for LG phones and the S8+;
we can see the indications on the screen. We suspect these
AT commands were mainly designed for UI automation
testing, since they mimic human interactions. Unfortu-
nately, they also enable more complicated attacks which
only requires a USB connection, as we will show in a later
section.

4.2.3 Sensitive Information Leaking

While Android security has been improving over the
years with respect to protecting privacy information, we
found quite a few AT commands providing different
kinds of information, including IMEI, battery level, phone
model, serial number, manufacturer, filesystem partition
information, software version, Android version, hard-
ware version, SIM card details, etc., as shown in Ta-
ble 9.10 Vendors also introduce their own commands to

7 While Odin wipes everything by default, LGUP leaves the user data
intact in the device if “Upgrade” mode is chosen.

8Level “full functionality” is where the highest level of power is
drawn.

9We discovered a bug leading to arbitrary file reads in the
AT%PROCCAT and AT%SYSCAT commands. See Section 4.3 for
more details.

10For more such commands, please refer to Table 14 in the Appendix.

Command Action Tested Phones

ATI Manufacturer, model,
revision, SVN, IMEI

G4/S8+/Nexus5/
ZenPhone2

AT%SYSCAT Read and return data
from /sys/*9

G3/G4

AT%PROCCAT Read and return data
from /proc/*

G3/G4

AT+DEVCONINFO Phone model, serial
number, IMEI, and etc.

Note2/S7Edge/S8+

AT+GMR Phone model G3/G4/Note2/S8+/
ZenPhone2

AT+IMEINUM IMEI number Note2/S7Edge/S8+
AT+SERIALNO Serial number Note2/S7Edge/S8+
AT+SIZECHECK Filesystem partition

information
Note2/S7Edge/S8+

AT+VERSNAME Android version S7Edge/S8+
AT+CLAC List all supported AT

commands
G3/G4/S7Edge/Nexus5/
ZenPad/ZenPhone2

AT+ICCID Sim card ICCID G3/G4/Nexus5

Table 9: A selection of commands that leak sensitive in-
formation about the device.

[['AT+DEVCONINFO\r+DEVCONINFO:
MN(SM-G955U);BASE(SM-N900);VER(G955USQU1AQD9/
G955UOYN1AQD9/G955USQU1AQD9/G955USQU1AQD9);
HIDVER(G955USQU1AQD9/G955UOYN1AQD9/G955USQU1AQD9/
G955USQU1AQD9);MNC();MCC();PRD(VZW);;OMCCODE();
SN(R38HC09NWMR);IMEI(354003080061555);
UN(9887BC45395656444F);PN();CON(AT,MTP);LOCK(NONE);
LIMIT(FALSE);SDP(RUNTIME);HVID(Data:196609,
Cache:262145,System:327681);USER(OWNER)\r',
'#OK#\r', 'OK\r']]

Figure 6: Output from “AT+DEVCONINFO” on a Sam-
sung S8+. Note information in bold corresponding to
model number, serial number, IMEI, and connection type.

ease querying. These are unauthenticated commands that
can be accessed by anyone. One example command is
“AT+DEVCONINFO” from S8+, providing detailed in-
formation about the phone as shown in Figure 6. Shown
in bold are examples of sensitive device information, in-
cluding device model (MN), serial number (SN), IMEI,
and connection over MTP.

We also find 3 AT commands that report all supported
AT commands on the device. “AT+CLAC” is a stan-
dard command; “AT+LIST” only works on Nexus 5;
and “AT$QCCLAC” appears to be a Qualcomm-specific
command supported by Qualcomm baseband processors.
Note that both “AT+CLAC” and “AT$QCCLAC” could
be supported at the same time within a device, returning
different lists of supported AT commands. We also lever-
aged these commands to limit the scope of AT commands
to try when we attempted to un-brick the LG G4.

4.2.4 Modem AT Proxy

Unlike other Android devices, which rely on
sys.usb.config to manage the USB functionality,
ASUS ZenPhone 2 has a unique setting to enable the

• AT+CLAC
• AT$QCCLAC

• AT%PROCCAT
• AT%SYSCAT

AT%PROCCAT=../arbitrary/file

• AT+DEVCONINFO
• AT+IMEINUM
• AT+SIZECHECK

Florida Institute of Cyber Security (FICS) Research 14

• AT+TRACE
• AT+XDBGCONF
• AT+XABBTRACE
• AT+XSYSTRACE
• AT+XLOG=95,1

Modem AT Proxy

• https://forum.xda-developers.com/galaxy-s2/help/how-to-talk-to-modem-commands-t1471241

• https://software.intel.com/en-us/blogs/2015/04/30/new-intel-usb-driver-version-190-for-android-
devices-available-for-download

https://forum.xda-developers.com/galaxy-s2/help/how-to-talk-to-modem-commands-t1471241
https://software.intel.com/en-us/blogs/2015/04/30/new-intel-usb-driver-version-190-for-android-devices-available-for-download

Florida Institute of Cyber Security (FICS) Research 15

• AT+VZWAPNE
• AT$SPDEBUG
• AT%MINIOS
• AT%VZWHM
• AT%VZWIOTHM
• AT%AUTOUITEST

Hidden Menus

Florida Institute of Cyber Security (FICS) Research 16

Demo

Attack I: Man-in-the-USB

Attack II: Confused-deputy-path-traversal

Florida Institute of Cyber Security (FICS) Research 17

Mitigations & Fixes
• Remove the USB Modem interface
• Restrict the USB Modem interface
• Use whitelist for command filtering

• LVE-SMP-180001

• Severity : High

• Date reported : February 02, 2018

• Affected device information : Android devices with OS 6.0, 6.0.1,
7.0, 7.1.1, 7.1.2, 8.0, 8.1

• Description : Vulnerability of AT CMD(Command) in smartphones.

• Samsung and LG have issued security updates AT

Florida Institute of Cyber Security (FICS) Research 18

Now What?

https://atcommands.org

https://atcommands.org

Florida Institute of Cyber Security (FICS) Research 19

Q&A

https://davejingtian.org

Thanks!

https://davejingtian.org

