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Abstract—Modern computer peripherals are diverse in their
capabilities and functionality, ranging from keyboards and print-
ers to smartphones and external GPUs. In recent years, periph-
erals increasingly connect over a small number of standardized
communication protocols, including USB, Bluetooth, and NFC.
The host operating system is responsible for managing these
devices; however, malicious peripherals can request additional
functionality from the OS resulting in system compromise, or
can craft data packets to exploit vulnerabilities within OS
software stacks. Defenses against malicious peripherals to date
only partially cover the peripheral attack surface and are limited
to specific protocols (e.g., USB). In this paper, we propose
Linux (e)BPF Modules (LBM), a general security framework
that provides a unified API for enforcing protection against
malicious peripherals within the Linux kernel. LBM leverages
the eBPF packet filtering mechanism for performance and
extensibility and we provide a high-level language to facilitate the
development of powerful filtering functionality. We demonstrate
how LBM can provide host protection against malicious USB,
Bluetooth, and NFC devices; we also instantiate and unify existing
defenses under the LBM framework. Our evaluation shows that
the overhead introduced by LBM is within 1 μs per packet
in most cases, application and system overhead is negligible,
and LBM outperforms other state-of-the-art solutions. To our
knowledge, LBM is the first security framework designed to
provide comprehensive protection against malicious peripherals
within the Linux kernel.

I. INTRODUCTION

Computer peripherals provide critical features to facilitate
system use. The broad adoption of computers can be traced
not only to the reduction in cost and size from mainframe
to microcomputer, but to the interactivity afforded by devices
such as keyboards and mice. Displays, printers, and scanners
have become integral parts of the modern office environ-
ment. Nowadays, smartphones and tablets can not only act
as peripherals to a host computer, but can themselves support
peripherals that attach to them.

The scope of functionality that peripherals can contain is
almost limitless, but the methods of connecting them to host
computers have converged to a few select standards, such
as USB [10] for wired connections and Bluetooth [15] for
wireless. As a result, most modern operating systems provide
support for these standards (and the peripherals that use them)
by default, implementing the respective software stacks inside
the kernel and running different device drivers to support
various classes of peripherals.

However, with this virtually unconstrained functionality
comes the threat of malicious devices that can compromise
computer systems in myriad ways. The BadUSB attack [62]
allows attackers to add functionality allowed by the USB pro-
tocol to device firmware with malicious intent. For example,
a BadUSB flash drive presents not only expected behavior
of a storage device when plugged into a computer, but also
registers keyboard functionality to allow it to inject malicious
keystrokes with the aim of gaining administrative privilege.
Other examples of malicious USB functionality include charg-
ers that can inject malware into iOS devices [51], or take
control of Android devices via AT commands [78]. Bluetooth
peripherals are also vulnerable: the BlueBorne attack [11]
allows remote adversaries to craft Bluetooth packets that will
cause a kernel stack overflow and enable privilege escalation,
while BleedingBit [12] exploits a stack overflow within the
Texas Instruments Bluetooth Low Energy (BLE) stack. We
observe that malicious peripherals launch attacks in one of two
ways, either by (1) sending unexpected packets (I/O requests
or responses) to activate extra functionality enabled by the
operating system, or by (2) crafting specially formed packets
(either legitimate or malformed) to exploit vulnerabilities
within the operating system’s protocol software stack.

Current defenses against malicious peripherals are not
comprehensive and are limited in scope. USBFILTER [79]
applies user-defined rules to USB packet filtering within the
Linux kernel, but fails to prevent exploitation from malformed
packets. USBFirewall [43], on the other hand, provides bit-
level protection by parsing individual incoming USB packets,
but offers limited support for user-defined filtering rules. Apple
recently added USB restricted mode in iOS 11.4, shutting
down USB data connections after the device stays locked for
an hour [84], but this restriction can be bypassed [2]. Not only
do these defenses lack comprehensive coverage, but they often
focus primarily or solely on USB, providing no protection
against peripherals using other interfaces.

In this paper, we propose Linux (e)BPF Modules (LBM),
a general security framework that provides a unified API for
enforcing protection against malicious peripherals within the
Linux kernel. LBM requires only a single hook for incoming
and outgoing peripheral data to be placed in each peripheral
subsystem, and modules for filtering specific peripheral packet
types (e.g., USB request blocks or Bluetooth socket buffers)
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can then be developed. Importantly for performance and
extensibility, we leverage the Extended BSD Packet Filter
(eBPF) mechanism [25], which supports loading of filter
programs from user space. Unlike previous solutions, LBM is
designed to be a general framework suitable for any peripheral
protocol. As a result, existing solutions such as USBFIL-
TER and USBFirewall can be easily instantiated using LBM.
Moreover, new peripherals can be easily supported by adding
extensions into the LBM core framework. To demonstrate the
generality and flexibility of LBM, we have fully instantiated
USBFILTER and USBFirewall using the LBM framework,
developed hooks for the Bluetooth Host Control Interface
(HCI) and Logical Link and Adaptation Protocol (L2CAP)
layers, and demonstrated a hook mechanism for the Near-Field
Communication (NFC) protocol. Our evaluation shows that the
general overhead introduced by LBM is within 1 μs per packet
across different peripherals in most cases; the application and
system benchmarks demonstrate a negligible overhead from
LBM; and LBM has a better performance when compared to
other state-of-the-art solutions.

We summarize our contributions1 below:
• Design and implement LBM as a general security frame-

work to defend against malicious peripherals. The LBM
core is designed as a high-performance packet filtering
framework based on eBPF. LBM hooks are provided to
extend support for different peripheral subsystems.

• Develop a high-level filter language to facilitate writing
LBM rules. Users can write LBM rules in a high-level,
PCAP-like language to apply different policies to periph-
eral data packets, to avoid having to write filters in the
complex, low-level BPF assembly language. Our user-
space LBMTOOL utility translates LBM rules into eBPF
instructions and loads them into the LBM core.

• Develop support for USB, Bluetooth, and NFC in LBM.
We extend LBM to support multiple peripheral protocols
by exposing useful protocol fields to the user space and
extending LBMTOOL to recognize LBM rules for differ-
ent peripherals. We demonstrate LBM’s extensibility by
unifying and fully implementing the USBFILTER and
USBFirewall defenses under the LBM framework.

• Evaluate performance and analyze coverage against pe-
ripheral attacks. By applying the appropriate LBM rules,
we are able to defend against all known peripheral
attacks. Our micro-benchmark shows that the general
overhead introduced by LBM is within 1 μs in most
cases, and the macro-benchmark shows that LBM has
better performance than other solutions, with negligible
impact on application throughput.

The remainder of the paper is structured as follows: Sec-
tion II provides background on peripheral security and BPF;
Section III presents our security model and goals alongside the
design of our solution; Section IV details the implementation
of our design in both kernel and user spaces; Section V eval-
uates LBM through case studies and benchmarks; Section VI

1Available at https://github.com/FICS/lbm.

discusses additional dimensions of our work; Section VII
explains limitations of our work; Section VIII summarizes
related work; and Section IX concludes.

II. BACKGROUND

A. Peripheral Security

USB. The Universal Serial Bus (USB) has been around since
1996 with the release of the version 1.0 specification [23].
USB emerged to provide a single, ubiquitous means to connect
peripherals that would support a variety of applications with
different performance requirements. Since its inception, USB
has undergone many revisions (1.1, 2.0, 3.0, 3.1, and most
recently 3.2 and Type-C). The set of supported peripheral
devices expanded with each version, and the current USB
version 3.2 [10] supports a data transfer rate of 20 Gbits per
second, much improved over the 12 Mbits per second of v1.0.

Numerous attacks have been demonstrated by vulnerable
or malicious USB peripherals. BadUSB [62] attacks work
by altering the firmware of USB devices so they register as
deceptive device types when plugged into a machine. For
example, a USB mass storage device could masquerade as
a keyboard to gain the ability to inject malicious keystrokes.
A malicious USB charger can inject malware into iOS de-
vices [51] or take full control of Android devices via AT
commands [78]. MouseJack [61] affects wireless mice and
keyboards that communicate with a computer through a USB
dongle. An adversary may inject keystrokes by spoofing either
a mouse or keyboard, and in some cases may even pair a fake
keyboard with a victim’s dongle.

More vulnerabilities with the USB protocol stack and
device drivers have been identified with the help of tools
such as FaceDancer [30] and syzkaller [31]. On one hand,
these vulnerabilities are mostly implementation bugs within
the software stack. On the other hand, malicious USB
devices can exploit these vulnerabilities to compromise the
whole system by sending out specially-crafted USB packets.
For a comprehensive exploration of the variety of available
USB attack vectors, we refer readers to Tian et al.’s study [80].

Bluetooth. Just as USB dominates wired connections for pe-
ripherals, Bluetooth [15] is the de facto standard for connecting
peripherals wirelessly. Being a short-distance Radio Frequency
(RF) technology, Bluetooth usually allows data transmission
within 10 meters. After Bluetooth 4.0, Bluetooth Low Energy
(BLE) and Bluetooth Mesh were introduced to support lower-
power consumption devices (e.g., IoT) and sensor networks.

Bluetooth, like USB, is also susceptible to a wide variety
of attacks [81] due to software implementation vulnerabilities
and malicious Bluetooth peripherals. BlueBug [52] allows an
attacker to send AT commands to take control of the victim’s
phone, from e.g., a malicious Bluetooth headset. Blueprint-
ing [38] and BlueBag [21] identify and collect statistics on
all discoverable devices in the area. BlueSnarf and BlueS-
narf++ [52] allow an adversary to acquire files from a victim
device without being authenticated. BlueDump [53] causes a
victim device to dump its stored link keys associated with
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connection events. CarWhisperer [37] allows an adversary to
eavesdrop on and inject audio into a car over Bluetooth. Blue-
Borne [11] attacks craft specially-formed Bluetooth packets to
exploit certain vulnerabilities within the software stack imple-
mentation, causing e.g., privilege escalation. BleedingBit [12]
attacks exploit another stack overflow within TI’s BLE stack.

While pairing is used to prevent unidentified devices
from being connected via Bluetooth, many attacks happen
before the pairing procedure. Also, pairing does not work for
simple devices without a means to input PINs. Unlike the
case for USB, there is no available systematic solution that
defends against malicious Bluetooth peripherals at all. The
most effective defense seems to be turning off Bluetooth or
physically unplugging the Bluetooth module.

NFC. Near Field Communication (NFC) [60] is another short-
range wireless communication protocol based on RFID tech-
nology. The operation range is usually within 4 to 5 centime-
ters. Smartphones (e.g., Androids and iPhones) commonly use
NFC as a quick means to exchange information, such as when
downloading a poster or making a payment.

Similarly, these NFC software stacks are also vulnerable. A
NFC feature that unknowingly invokes a Bluetooth connection
can install malware on phones [83]. “Exploring the NFC
Attacking Surface” [56] lists four possible attacks enabled by
bugs within the Android and N9 software stacks. A recent
bug within the Linux kernel NFC software stack [13] allows
a malicious NFC device to inject a malformed packet to
launch out-of-bounds writes in kernel memory.

In Summary. Regardless of wireline or wireless, these pe-
ripheral communication protocols often refer to their commu-
nication unit as a “packet” (e.g., USB packets or Bluetooth
packets). The OS further instantiates the abstraction of these
“packets” within the context of a given I/O subsystem. This
provides us an opportunity to treat these peripheral security
issues as we would treat networking security issues: by build-
ing firewalls for these peripherals and applying rules to filter
unwanted (malicious) packets.

B. BPF/eBPF

The BSD Packet Filter (BPF) [54] is a high-performance
RISC-based virtual machine running inside the OS. Since its
creation, it has been used as a standard way for packet filtering
in the kernel space. The most well-known BPF customer
might be tcpdump, which compiles filtering rules into BPF
instructions and loads them into the kernel via socket APIs.
Extended BPF (eBPF) [25], [45] is a new ISA based on the
classic BPF. Compared to the old ISA, eBPF increases the
number of registers from 2 to 10 and register width from 32-
bit to 64-bit. eBPF also introduces a JIT compiler to map eBPF
instructions to native CPU instructions, including x86, x86-64,
ARM, PowerPC, Sparc, etc. A new syscall bpf, added since
Linux kernel 3.18, supports loading eBPF programs from the
user space.

Besides the ISA extensions, eBPF provides new ways to
communicate between user and kernel spaces, and to call
kernel APIs within BPF programs [67]. eBPF maps are a
generic data structure to share data between the user/kernel
spaces. A typical usage is to have the kernel update certain
values (e.g., the number of IP packets received) inside the
map with the user space program picking up the change.
BPF helpers are a special call to bridge the eBPF programs
and kernel APIs. The newly added CALL instruction can
be used to trigger predefined BPF helpers, which usually
wrap up kernel APIs to implement some functionalities that
cannot be achieved by eBPF instructions themselves. eBPF
also includes a verifier, which checks the safety of a given
eBPF program via a directed acyclic graph (DAG) check
(to ensure bounded execution) and by checking for memory
violations. The purpose of this verifier is to make sure that an
eBPF program cannot affect the kernel’s integrity.

III. DESIGN

We first describe the security model we consider, outline
the goals we set for our solution, and finally show how we
achieve these goals through different aspects of the design.

A. Security Model

We consider attacks from peripherals to require physical
access to the host machine (e.g., plugging into the USB port)
or use wireless channels to connect with the host (e.g., over
Bluetooth). These malicious peripherals usually try to achieve
privilege escalation by claiming unexpected functionalities
(e.g., BadUSB [62]), or exploiting the kernel protocol stack via
specially crafted packets (e.g., BlueBorne [11]). Note that we
do not consider DMA-based attacks [74], where IOMMU [41]
is needed to stop arbitrary memory writes from the peripheral.

Our Trusted Computing Base (TCB) is made up of the
Linux kernel and the software stack down below. We assume
trusted boot or measured boot, such as Intel TXT [32], is
deployed to protect system integrity. We also assume Man-
datary Access Control (MAC), such as SELinux [69], is being
enforced across the whole system.

B. Goals: Beyond A Reference Monitor

The first three goals we set (G1 through G3) are drawn from
the classic reference monitor concept [7], and are needed to
build a secure kernel. The remaining goals (G4 through G7)
draw inspiration from existing security frameworks, such as
Linux Security Modules (LSM) [86], and consider practical
issues surrounding usage and deployment.
G1 Complete Mediation – For each kind of supported

peripheral, we need to guarantee that all inputs from the
device and all outputs from the host are mediated.

G2 Tamper-proofness – Assuming the system TCB is not
compromised, we need to defend against any attacks
originating from outside the TCB.

G3 Verifiability – While a whole-system formal verification
may be infeasible, we should mandate formal guarantees
for security-sensitive components.
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Figure 1: LBM Architecture.

G4 Generality – The solution should provide a general
framework that seamlessly incorporates the features of
existing security solutions.

G5 Flexibility/Extensibility – The addition of support for
new kinds of peripherals should be a straightforward and
non-intrusive process.

G6 Usability – The solution should be easy to use.
G7 High Performance – The solution should introduce

minimal overhead.
Bearing these goals in mind, we design the Linux (e)BPF
Module (LBM), as shown in Figure 1.

Within the kernel space, LBM interposes different periph-
eral subsystems (such as USB, Bluetooth, and NFC) at the
bottom level, covering both TX and RX paths. Before a packet
can be sent out or reach the corresponding protocol stack
for parsing, LBM applies filtering rules (eBPF programs)
and loaded LBM kernel modules to the packet for filtering.
In the user space, we introduce a new filter language for
peripherals. Filters written in this language are compiled into
eBPF programs and loaded into the kernel by LBMTOOL.

In short, LBM provides a general peripheral firewall frame-
work, running eBPF instructions as the packet filtering mech-
anism. We instantiate LBM on USB, Bluetooth, and NFC to
cover the most common peripherals.

C. LBM Kernel Infrastructure

We design LBM as a standalone kernel component/subsys-
tem statically linked into the kernel image. We rely on TPM
and IMA [65] to guarantee the boot time integrity of the kernel
and load time integrity of user-space dependencies. We further
use MAC such as SELinux [69] to make sure LBM cannot
be disabled without root permission. Since LBM cannot be
unloaded/reloaded as a kernel module, disabled, or bypassed
from the user space, we achieve G2 – tamper-proofness.

For each kind of peripheral that LBM supports, we need to
place “hooks” on both the TX and RX paths to mediate each
packet being sent to and received from the peripheral. While

USB Peripherals

Host Controller Device Driver

LBM TX LBM RX

USB Core
Storage Driver Input Driver Video Driver

Host Controller Device

Figure 2: LBM hooks inside the USB subsystem.

different peripheral subsystems may have different structuring
of their software stack architectures within the kernel, we
follow two general rules for the placement of LBM hooks.
First, these hooks should be placed as close as possible to
the real hardware controlling the corresponding peripherals.
This helps reduce the potential impact from vulnerabilities
within the upper layer of the software stack (e.g., by packets
bypassing the hooks). Second, these hooks should be general
enough without relying on the implementation of certain
hardware. As a result, we place LBM hooks beneath the core
implementation of a peripheral’s protocol stack, and above a
specific peripheral controller driver.

Take USB as an example. As shown in Figure 2, LBM
hooks are deployed just above the host controller device and its
driver, which communicates with USB peripherals directly. At
the same time, the hooks are deployed below the USB core and
other USB device drivers, preventing third-party USB drivers
from bypassing these hooks. Through this careful placement
of LBM hooks, we achieve G1 – complete mediation.

Since LBM allows the loading of eBPF programs into the
kernel space and executing of these programs for peripheral
packet filtering, special care is needed to make sure these
programs are not introducing new vulnerabilities into the
kernel or bypassing security mechanisms enforced by the
kernel. We leverage the eBPF verifier [70] to examine each
eBPF program before it can be loaded. Unlike normal eBPF
programs (mainly used by the networking subsystem) loaded
by the bpf syscall, we forbid both bounded loop [26] and
packet rewriting (e.g., changing the port number of a TCP
packet) in LBM. Once a program passes verification, we can
be sure that the program halts after a limited number of state
transitions, that each program state is valid (e.g., no stack
overflow occurs), and that no instruction changes the kernel
memory (besides the program’s own stack). We achieve G3 –
verifiability for programs executed by LBM.

LBM draws inspiration from state-of-the-art solutions in-
cluding USBFILTER [79] and USBFirewall [43], and im-
proves on them, as shown in Table I. Similarly to USB-
FILTER, LBM supports kernel module plugin. As depicted
in Figure 1, different LBM kernel modules (e.g., lbm1-lbm3)
can be plugged into the LBM framework and essentially hook
into the TX and/or RX paths for different peripherals. As we
will later show in Section V-A, it takes less than 20 lines of
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Feature USBFILTER USBFirewall LBM
Plugin Modules � �
Stack Protection � �

User-defined Rules � �
TX Path Mediation � �
RX Path Mediation � �
Multiple Protocols �

Table I: LBM compared to USBFILTER and USBFirewall.
LBM unifies USBFILTER and USBFirewall, providing a su-
perset their properties via extensible protocol support.

Feature USBFILTER USBFirewall LBM
Filter Mechanism C C eBPF
User-space DSL CNF N/A PCAP DSL

Acceleration Short Circuit N/A JIT

Table II: LBM vs. USBFILTER vs. USBFirewall, specifically
with respect to filter design of each.

change to convert a LUM (Linux USBFILTER Module) into
an LBM module. To protect protocol stacks from malformed
packets, we derive packet field constraints from specifications.
Rather than translating these constraints into C and compil-
ing them into the kernel image like USBFirewall does, we
transform them into eBPF programs and load them on the
RX paths for malformed packet filtering. In short, we achieve
G4 – generality, by incorporating all the features provided
by existing solutions. Additionally, we extend support beyond
USB to other peripherals, such as Bluetooth and NFC.

To ease support for a new kind of peripheral, we design a
unified API used by different subsystems to hook into LBM:

int lbm_filter_pkt(
int subsys, int dir, void *pkt)

subsys determines the index of a certain peripheral subsys-
tem (e.g., 0 for USB and 1 for Bluetooth); dir specifies the
direction of the I/O path: TX or RX; and pkt points to the
core kernel data structure used to encapsulate the I/O packet
depending on different subsystems, (e.g., urb for USB and
skb for Bluetooth). Once this LBM hook is placed into a
peripheral subsystem, developers can write an LBM module to
filter packets using typical C programming, by implementing
the TX and/or RX callbacks:

int (*lbm_ingress_hook)(void *pkt)
int (*lbm_egress_hook)(void *pkt)

A more useful extension is to expose some packet fields to
the user space, and implement BPF helpers as backends to
provide data access to these fields if needed (as we have done
for USB and Bluetooth). As a result, LBMTOOL can generate
a new dialect for the new peripheral based on a PCAP-like
packet filtering language. Users can then write filtering rules
as they would for tcpdump instead of directly crafting eBPF
instructions. Through the design of the LBM framework and
the introduction of a domain specific language (DSL), we
achieve G5 – flexibility/extensibility.

Besides the verifiability of eBPF programs, we choose eBPF
as the filtering mechanism in LBM to strike a balance between

eBPF 
Program

Parse Semantic
Analysis

Tree
Shaping

IRGenCodeGen

CSTExpr

ASTIR

lbmtool

Loader
sysfs

sys_bpf

write

call

Figure 3: The flow of LBMTOOL in compiling LBM rules to
eBPF programs and loading them into the running kernel.

performance and programmability. As shown in Table II, both
USBFILTER and USBFirewall rely on hardcoded C compiled
into the kernel to implement the filter mechanism. Although
USBFirewall leverages the Haskell description of the specifi-
cation to generate the C code, it lacks support for a user-space
DSL. USBFILTER only supports a limited DSL following the
conjunctive normal form (CNF). As we will elaborate in the
following section, LBM DSL is more expressive and powerful.
Instead of implementing a filtering mechanism directly, LBM
builds an eBPF running environment for peripherals and
executes eBPF programs as filters. Thanks to JIT compilation
of eBPF code, LBM is able to run filters as fast as native
instructions; thus, we achieve G7 – high performance.

D. LBM User Space

To interact with an LBM-enabled kernel we design LBM-
TOOL, a frontend utility to interact with the LBM kernel space.
Its primary purpose is to compile, load, and manage LBM
programs resident in the kernel. To create a unified, simple,
and expressive way of describing peripheral filtering rules, we
develop a custom Domain Specific Language (DSL) modeled
on Wireshark and tcpdump filter expressions. These LBM
rules are processed by LBMTOOL using a custom compiler that
outputs eBPF filter programs, as shown in Figure 3. Compiled
filters are loaded into the LBM framework via an extension to
the sys_bpf syscall. Programs are then loaded into a specific
subsystem: USB, Bluetooth, or NFC.

The filter syntax we develop is concisely described by the
grammar shown in Appendix A. Filter rules are effectively
stateless expressions that abstract away from the eBPF lan-
guage syntax. For example, if we want to match on a specific
USB device’s vendor and product ID, such as a Dell optical
mouse, we would write:

usb.idVendor == 0x413c && usb.idProduct == 0x3010

If we want to include more than one Dell product, we could
write multiple rules, or we could consolidate them into a larger
expression. To match on a Dell mouse, keyboard, printer, and
Bluetooth adapter, we would write:

usb.idVendor == 0x413c && (
usb.idProduct == 0x3010 || // Mouse
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usb.idProduct == 0x2003 || // Keyboard
usb.idProduct == 0x5300 || // Printer
usb.idProduct == 0x8501 // Bluetooth adapter

)

The LBMTOOL compiler supports multi-line nested sub-
expressions while following the C 89 Standard operator prece-
dence rules [5].

LBMTOOL is able to load a compiled LBM program into
a target subsystem TX (OUTPUT) or RX (INPUT) path
and specify a match action (i.e., ACCEPT or DROP). The
following usage has LBMTOOL compile and load a filter rule:

lbmtool --expression "usb.idProduct == 0x3010"
-o mouse.lbm

lbmtool --load mouse.lbm -t usb -A INPUT -j
ACCEPT

By providing descriptive error-checking in LBMTOOL and
developing a custom DSL that is easy to write in and reason
about, we achieve G6 – usability.

IV. IMPLEMENTATION

A. LBM Kernel Space

We divide the implementation of the LBM kernel space
into three parts: core, USB implementation, and Bluetooth
implementation. All LBM-specific code is located under the
security/lbm directory of the Linux kernel source tree,
as a new security component for the Linux kernel.

LBM Core: To load an eBPF program into LBM, we extend
the existing bpf syscall, sys_bpf. We define a new program
type BPF_PROG_LOAD_LBM to distinguish LBM calls from
other typical BPF usage. Unlike typical eBPF programs, which
normally only persist for the lifetime of the loading process,
LBM filters must persist after LBMTOOL exits. To extend
the lifetime of these programs, we pin them using the BPF
filesystem [17], essentially using the filesystem to increase the
reference count of the object.

Before a program is saved by the LBM core, the eBPF ver-
ifier checks every instruction of the program for any security
violations. Depending on the subsystem (USB or Bluetooth) of
the program, LBM provides different verifier callbacks, such
as LBM USB or LBM Bluetooth (as we will detail later),
thus making sure every memory access of the program is
meaningful, aligned, and safe.

Inside LBM, all eBPF programs are organized based on
the relevant subsystem and the direction of the filtering path
(i.e., TX or RX). We allow the same program to apply for
both the TX and RX paths when it is loaded using the BPF
syscall, and duplicate the program on TX and RX queues,
respectively. The separation of TX and RX paths is mainly
for performance, since it allows us to bypass programs that do
not interpose on a certain path during filtering. Additionally,
to avoid expensive locking, each program is protected by the
read-copy-update (RCU) [34] mechanism to enable concurrent
reads by different LBM components. LBM modules are also
organized according to subsystem and filter path, and protected

1 int lbm_filter_pkt(int subsys, int dir, void *pkt)
2 {
3 check_subsystem(subsys);
4 check_path(dir);
5 check_pkt(pkt);
6 res = ALLOW;
7 if (dir == TX) {
8 for_each_ebpf_in_db[subsys][dir] {
9 if (ebpf(subsys, dir, pkt) == DROP) {

10 res = DROP;
11 goto RET;
12 }}
13 for_each_kmod_in_db[subsys][dir] {
14 if (kmod(subsys, dir, pkt) == DROP) {
15 res = DROP;
16 goto RET;
17 }}
18 } else { /* Ditto for the RX */ }
19 RET:
20 return res; }

Figure 4: Pseudo-code of lbm_filter_pkt.

Subsystem # of Fields # of BPF-helpers # of Lines
USB 34 31 621

Bluetooth-HCI 30 29 683
Bluetooth-L2CAP 28 27 744

TOTAL 92 87 2048

Table III: LBM statistics per subsystem, including # of fields
exposed to the user space, # of BPF helpers implemented, and
# of lines of code changes.

by RCU. The pseudo code of lbm_filter_pkt, previously
mentioned in Section III-C, is presented in Figure 4.

To ease the management of LBM filters and modules, we
expose ten entries under /sys/kernel/security/lbm/,
including a global switch to enable/disable LBM; per-
subsystem switches to enable/disable debugging, profiling, and
statistics; and per-subsystem-per-path controls to view/remove
loaded filters and modules. The whole implementation of
LBM core is around 1.6K lines of code.

LBM USB: As shown in Figure 2, LBM hooks into
the Host Controller Device (HCD) core implementation to
cover both TX and RX paths. These hooks eventually call
lbm_filter_pkt before the packet reaches the USB core,
as demonstrated below:

lbm_filter_pkt(LBM_SUBSYS_INDEX_USB, LBM_DIR_TX,
(void *)urb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_USB, LBM_DIR_RX,
(void *)urb);

Every USB packet (urb) then needs to go through the LBM
core for filtering before being sent to or received from USB
peripherals.

To support writing rules in LBMTOOL, we expose packet
metadata maintained by the kernel and packet fields defined
by the USB specification to the user space. To achieve this,
a naive approach would be to mirror the urb structure
to the userspace, while providing every field explicitly in
the filter DSL. Unfortunately, exposing raw kernel structures
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to the userspace is a security risk, as doing so will leak
sensitive kernel pointer values, which can be used to break
KASLR [24]. Explicitly supporting every field is infeasible as
well, given the complexity of the protocol suites. As a trade-
off, we expose the most commonly recognized and used fields,
while providing special BPF helpers for accessing the rest of
the fields. These helpers allow LBM filters to support array
accesses to urb structures, thus enabling them to access every
field within a USB packet.

As shown in Table III, we expose 34 fields and implement
31 BPF helpers for the USB subsystem. Besides the special
BPF helpers mentioned above for accessing packet fields,
additional helpers are implemented for returning the length
of a buffer or string, or for providing access to the indirect
members of the urb structure. For fields that are direct
members, no helper is needed since we can access them using
an offset from within the urb. We group these fields together
in a struct and expose it to the user space, as listed below:

struct __lbm_usb {
__u32 pipe;
__u32 stream_id;
__u32 status;
__u32 transfer_flags;
__u32 transfer_buffer_length;
__u32 actual_length;
__u32 setup_packet;
__u32 start_frame;
__u32 number_of_packets;
__u32 interval;
__u32 error_count; };

Instead of exposing urb itself to the user space and using
the corresponding offsets, LBMTOOL only needs to know the
__lbm_usb struct and use offsets against it to directly access
these fields. LBM handles the translation of struct member
access within __lbm_usb into one within the kernel urb.

To help the BPF verifier understand the security constraints
of LBM and the scope of the USB subsystem, we implement
three callbacks within the bpf_verifier_ops struct used
by the verifier. We first explicitly enumerate all legal BPF
helpers for the verifier, including the 31 LBM USB BPF
helpers mentioned above as well as other common BPF
map helpers. We exclude any existing BPF helpers designed
for the networking subsystem. Therefore, the verifier would
reject any LBM USB filters that use BPF helpers besides
the ones specified. We then validate every member access
of __lbm_usb within the range, and forbid any memory
write operations. Finally, we rewrite the instructions accessing
__lbm_usb and map them into corresponding urb accesses.

LBM Bluetooth: The implementation for Bluetooth follows
the same procedure as for USB. We place hooks into the
Host Control Interface (HCI) layer of the Bluetooth subsystem,
as HCI talks to the Bluetooth hardware directly. While HCI
provides the lowest-level of packet abstraction for the upper
layers, it is not easy for normal users to interact with this layer
since it lacks support for high-level protocol elements, such as
connections and device addresses, which are better known to
Bluetooth users. To bridge this semantic gap, we add another

Bluetooth Peripherals

Host Controller Interface

LBM TX LBM RX

Bluetooth Core

Bluetooth Module

ACL

LBM TX

SCO

LBM RX

L2CAP

Figure 5: LBM hooks inside the Bluetooth subsystem.

set of hooks into the Logical Link Control and Adaptation
Protocol (L2CAP) layer right above HCI, as shown in Figure 5.
These hooks are effectively calls to lbm_filter_pkt, as
demonstrated below:

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH,
LBM_DIR_TX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH,
LBM_DIR_RX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH_L2CAP,
LBM_DIR_TX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH_L2CAP,
LBM_DIR_RX, (void *)skb);

The Bluetooth packet is encapsulated in a socket buffer,
or skb in kernel parlance, for both the HCI and the L2CAP
layers. During development, we encountered two challenges
while hooking the TX path of L2CAP. Unlike for the RX path,
the L2CAP layer provides multiple functions for sending out
L2CAP packets. Even worse, because of different Maximum
Transmission Unit (MTU) sizes between HCI and L2CAP,
an L2CAP packet is usually fragmented during packet con-
struction before being sent to the lower layer. One possible
solution would be to place LBM hooks inside every function
on the TX path and reassemble the packet there. Besides the
resulting code duplication, the major fault in this solution is
the maintenance burden of adding hooks to new TX functions.

To solve these challenges, we deploy only one LBM hook
at the Asynchronous Connection-Less (ACL) layer within HCI
and reassemble the original L2CAP packet there, while fully
covering all TX cases used by the L2CAP layer. Note that the
RX path still has the LBM hook inside the L2CAP layer, as
the kernel has already handled the packet reassembly.

As shown in Table III, we expose 30 and 28 protocol fields
from the HCI and L2CAP layers, respectively. Note that both
layers share the same 12 fields related with connections. For a
HCI packet, a BPF helper is provided to check if a connection
is established (indicated by the availability of these fields). For
L2CAP, a connection is always established. We also implement
29 and 27 BPF helpers for HCI and L2CAP, respectively,
which can retrieve the value of exposed fields. As with the
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USB subsystem, we enumerate all the legal BPF helpers that
can be called within the Bluetooth subsystem, and restrict the
memory write operations in the verifier.

B. LBM User Space

LBMTOOL is responsible for compiling LBM rules to eBPF
programs and loading them into the kernel. Rules/filters pass
through standard compilation stages before ending up in the
kernel as compiled eBPF. To begin, we tokenize and parse the
input LBM filter. To simplify these initial steps we use Lark, a
dependency-free Python library that supports LALR(1) gram-
mars written in EBNF syntax. Lark processes our LBM rule
grammar and creates a working standalone parser. Once filters
are lexed, they are parsed into a Concrete Syntax Tree (CST),
also known as a parse tree [4]. The raw parse tree is then
shaped and canonicalized over multiple steps into a friendlier
representation known as an Abstract Syntax Tree (AST). These
steps include symbol (e.g., usb.idProduct) resolution, type
checking, and expression flattening. After processing, the AST
more accurately represents the LBM language semantics and
is flattened into a low-level Intermediate Representation (IR)
for backend processing.

Our IR is modeled on Three-Address Code (TAC) [4], and
it has a close mapping to the DSL semantics. Additionally,
we ensure that our IR conforms to Static Single Assignment
(SSA) form to simplify register allocation and any late IR
optimization passes. Once we have optimized our IR, it moves
to the eBPF instruction generator. There, we allocate registers
and translate each IR instruction into corresponding eBPF
instructions. Our register allocator maps an infinite number
of virtual registers from our SSA IR to a fixed number of
eBPF physical registers. To do this, it builds an interference
graph [22] of the IR statements in the program. This graph
encodes the lifetime of each virtual register throughout the
program and aids in quickly selecting appropriate physical reg-
isters during the allocation process. With registers allocated,
each IR statement is processed in order by the eBPF instruction
generation backend to produce assembly instructions. With
machine code produced, any remaining control transfer labels
are resolved by a final two-pass assembly step. The resulting
eBPF instructions are packaged into a LBM object file with
metadata for loading into the kernel. For an example of the
compiler’s output at each stage, visit Appendix B.

V. EVALUATION

To evaluate LBM, we first demonstrate how users can write
simple LBM rules to protect protocol stacks and defend against
known attacks through case studies. These case studies center
around the USB and Bluetooth stacks, ending with an proof-
of-concept implementation of NFC support in LBM. We divide
the cases between specific attacks from malicious peripherals
and general host system hardening against potential peripheral
threats. The next part of our evaluation focuses on benchmark-
ing the performance of LBM. We divide the benchmarking into
our testing setup, micro-benchmark, (providing LBM overhead
per packet), macro-benchmark (showing LBM overhead on the

application and system level), and scalability (covering 100
LBM rules and comparing LBM with previous solutions).

A. Case Studies

Kernel Protocol Stack Protection: To protect the kernel’s
USB protocol stack similar to USBFirewall, we extract proto-
col constraints from the USB specification and translate them
to LBM rules for loading via LBMTOOL. For example, to
ensure the response of a Get_Descriptor request is well-
formed during the enumeration phase, we write:

((usb.setup_packet != 0) && /* For enumeration */
(usb.request[0] == 0x80) && /* Get_Descriptor */
(usb.request[1] == 0x06) &&
/* Make sure response contains at least 2 bytes

*/
((usb.actual_length < 2) ||
/* Make sure the descriptor type matches */
((usb.request[3] != usb.data[1]) ||
/* Device descriptor */
((usb.request[3] == 1) && ((usb.data[0] != 18)

|| (usb.actual_length != 18))) ||
/* Configuration descriptor */
((usb.request[3] == 2) && ((usb.data[0] < 9)

|| (usb.actual_length < 9))) ||
/* String descriptor */
((usb.request[4] == 3) && ((usb.data[0] < 4)

|| (usb.actual_length < 4))))))

We first make sure the response has at least 2 bytes, for extract-
ing the length (usb.data[0]) and type (usb.data[1])
of the response. We reject the packet if there is a type
mismatch between request and response. Depending on the
descriptor type, we then make sure the response has the
minimum length required by the specification. To fully cover
all the responses during USB enumeration, we also check the
response returned by Get_Status in a similar fashion. We
use FaceDancer [30] and umap2 [57] to emulate a malicious
hub device fuzzing the host USB stack. Our stack protection
filters are able to drop all malformed packets during USB
enumeration.

To protect the Bluetooth stack within the kernel, we extract
the constraints from the Bluetooth specification and rewrite
them using LBMTOOL as follows:

/* HCI-CMD */
((bt.hci.type == 1) && (bt.hci.len < 3)) ||
/* HCI-ACL */
((bt.hci.type == 2) && (bt.hci.len < 4)) ||
/* HCI-SCO */
((bt.hci.type == 3) && (bt.hci.len < 3)) ||
/* HCI-EVT */
((bt.hci.type == 4) && (bt.hci.len < 2)))

This rule provides basic protection for the HCI layer.
Depending on the packet type, we make sure the response
has the minimum length required by the specification. We
also implemented similarly styled protection for the L2CAP
layer.

Preventing Data Leakage: In addition to propagating mal-
ware, USB storage devices are also used to steal sensitive
information from a computer. To tackle this threat, USBFIL-
TER implemented a plugin to drop the SCSI write command
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on the TX path, thus preventing any data from being written
into a connected USB storage device; this plugin mechanism
is referred to as Linux USBFILTER Module (LUM).

Recall LBM is designed to support the features of existing
solutions. We are able to port the SCSI-write-drop LUM to
LBM with only around 10 lines of code changes (primarily
adjusting naming of callbacks and header files). In fact, any
LUM can be ported to LBM with similarly minimal changes,
because LUMs can be treated as a special case on USB in
LBM. As they are essentially kernel modules, neither LUMs
nor LBM module extensions are as constrained as the LBM
filter DSL, given that they are written in C and call kernel
APIs directly.

Trusted Input Devices: One of the most common BadUSB
attacks relies on the Human Interface Device (HID) class,
in which a malicious USB device behaves like a keyboard,
injecting keystrokes into the host machine. With LBM, we
can write a rule specifying a trusted input device, such that
keystrokes from all other input devices are dropped, as follows:

((usb.pipe == 1) && /* INT (Keystroke) */
((usb.manufacturer != "X") ||
(usb.product != "Y") ||
(usb.serial != "Z") ||
(usb.plugtime != 12345)))

For all keystrokes, we check against the expected
manufacturer, product, and serial number of the trusted input
device. This rules out any devices from different vendors or
different device models, and only permits keystrokes from
the trusted input device without completely disabling the
USB keyboard functionality. Similarly to writing udev rules,
system administrators can plug in their trusted input devices
to collect the device information before writing and loading
LBM filters into the kernel. In case of a BadUSB device
spoofing its identity, we extend the USB hub thread to report
the initial timestamp when a device was plugged in, and
expose this field to user space. Sysadmins can discover this
timestamp in dmesg and include it as part of a LBM rule.2

As such, even if a malicious device were able to mimic the
identity of the trusted input device, the malicious keystrokes
would be dropped because the initial timestamp would differ.

Securing USB Charging: A well-known defense against
BadUSB attacks by USB chargers is the “USB condom” [75],
which effectively physically disconnects the USB data pins
(D+/-) from the USB bus. Unfortunately, this prevents phones
that support USB Battery Charging [63] from drawing extra
power via the data wires. As a result, fully charging a phone
may take 15 times as long due to the lower amperage.
Additionally, a comparable device is not available for USB
Type-C. Using LBM, we could instead implement a software
USB data blocker:

((usb.busnum == 1) && (usb.portnum == 1))

2We assume these trusted input devices do not get unplugged and replugged
very often. Using this field solely is also possible, although then we can not
limit the USB packet type to include only keystrokes.

After applying this LBM rule to the RX path, we are able
to drop any data transmission from the physical USB port
1 under bus 1, thus making the port charge-only for any
connections. This LBM rule does not interfere with USB
Battery Charging, since the data wires are still physically
connected, and can be applied to any physical USB port,
regardless of whether or not it is Type-C.

Securing Bluetooth Invisible Mode: To prevent a Bluetooth
device from being scanned by another (potentially) malicious
device, such as during a Blueprinting [38] or BlueBag [21] at-
tack, Bluetooth introduces discoverable and non-discoverable
modes to devices. A device in non-discoverable mode does not
respond to inquires from other devices, thus hiding its presence
from outsiders. On one hand, the toggling of this mode can be
controlled from the user space, (e.g., using bluetoothctl,
which should require root permission). On the other hand,
any vulnerabilities within these user-space daemons and tools,
once exploited, might put the device into discoverable mode
again. To prevent this, we could define a LBM rule as follows:

((bt.hci.type == 1) && /* HCI-CMD */
(bt.hci.command.ogf == 3) && /* Discoverable */
(bt.hci.command.ocf == 58))

This rule detects the HCI command used to enable the
discoverable mode on the device. Once applied to the
TX path, the rule drops any request from the user space
attempting to put the device into discoverable mode. We
could write a similar rule to enforce non-connectable mode,
which is used to prevent any Bluetooth connection to the
device, even if its MAC address is known beforehand.

Controlling Bluetooth/BLE Connections: Along with the
rise of IoT devices, which often rely on Bluetooth Low Energy
(BLE), Android devices began to support BLE since version
4.3 [8], with iOS adding support from the iPhone 4S forward.
The Linux kernel Bluetooth stack (BlueZ [48]) also supports
both classic Bluetooth and BLE at the same time. Although it
is not uncommon to see a dual-mode device supporting both
classic Bluetooth and BLE, it is surprisingly challenging (if
not impossible) to enable only one of them while disabling the
other. [16] With LBM, enabling/disabling Bluetooth or BLE
connections is just a one-liner:

((bt.hci.conn == 1) && /* A link exists */
(bt.hci.conn.type == 0x80)) /* BLE link */

This LBM rule checks the connection type for each
Bluetooth or BLE packet, and drops the packet if the
connection is BLE, thus preventing unfamiliar IoT devices
from establishing a connection while still allowing classic
Bluetooth connections. It also provides a quick workaround
for BleedingBit attacks [12] without waiting for firmware
updates. Simply changing == 0x80 to != 0x80 achieves
the opposite effect, only permitting BLE connections and thus
providing a temporary defense against BlueBorne attacks [11].

Defending Against BlueBorne: BlueBorne attacks exploit
vulnerabilities within Bluetooth protocol stack implementa-
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tions, by sending either malformed or specially crafted Blue-
tooth packets. Within the Linux kernel, this vulnerability
resulted from a missing check before using a local buffer. As
a result, a crafted packet could cause a kernel stack overflow,
potentially leading to remote code execution. Although the fix
was a straightforward one, adding the missing checks [68], and
applying patches to existing devices still requires additional
steps of rebuilding the kernel and flashing new firmware. With
LBM, we can write a simple rule to properly defend against
the potential kernel stack overflow:

((bt.l2cap.cid == 0x1) && /* L2CAP Signaling */
/* Configuration Response */
(bt.l2cap.sig.cmd.code == 0x5) &&
(bt.l2cap.sig.cmd.len >= 66))

We first pinpoint where the vulnerability was triggered,
which is at the L2CAP layer during configuration response.
Because the local buffer is 64 bytes and the first 4 bytes
are used for the header, the actual data buffer to hold
configuration options is 60 bytes. In the rule above,
bt.l2cap.sig.cmd.len denotes the total length of a
L2CAP command packet. Without counting the 6-byte header,
the actual payload size of a command packet is cmd.len
- 6. To defend against BlueBorne attacks, all we need is
to make sure (cmd.len - 6) < 60. Therefore, our rule,
which is written to drop any configuration response larger
than 66 bytes, will put a stop to BlueBorne. The above two
rules demonstrate that LBM provides a dynamic patching
capability to protocol stacks within the kernel, without
waiting for official kernel patches or firmware updates to be
upstreamed.

NFC Support: To further show the generality of LBM, we
extend LBM to support NFC. Unlike Bluetooth, NFC has three
different standards (software interfaces) for communicating
with NFC modules, including HCI [28], NCI [59], and Dig-
ital [58]. As a proof-of-concept, we focus on NCI, exposing
two protocol fields and implementing one BPF helper. The
number of additional lines of code added to the kernel and
LBMTOOL to make LBM support NFC is shown in Table IV.

Step 1: Placing LBM hooks. NCI provides unique interfaces
to cover both TX and RX transmission: nci_send_frame
and nci_recv_frame. As for other networking subsystems,
skb is used to carry NFC packets. We place the following
LBM hooks at the two interfaces:

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_TX,
(void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_RX,
(void *)skb);

Step 2: Exposing protocol fields. We expose the packet
length (nfc.nci.len) and message type (nfc.nci.mt)
fields to the user space. The packet length is a member of
the struct __lbm_nfc exposed in the LBM user-space
header file. The message type is implemented as a BPF helper
calling other NCI APIs.

Step 3: Enhancing lbmtool. LBMTOOL is easily extensible
for new protocols, as we do for NFC. The internal LBM-

NFC Kernel lbmtool Total
# of lines 85 12 97

Table IV: The number of lines added to support NFC.

LBM Rule Purpose # of Insn Scope
USB-1 Stack Protection 72 Micro/Macro BM
USB-2 Stack Protection 25 Micro/Macro BM
USB-3 User Defined 22 Scalability BM
HCI-1 Stack Protection 81 Micro/Macro BM

L2CAP-1 Stack Protection 76 Micro/Macro BM

Table V: Details about the five LBM rules used during the
benchmarks.

Subsystem Min Max Avg Med Dev
USB 0.29 11.18 1.26 1.83 0.44

0.12 8.87 0.55 0.28 0.33
Bluetooth-HCI 1.16 17.87 2.81 2.70 0.62

0.27 15.67 0.98 0.77 0.47
Bluetooth-L2CAP 1.32 25.87 2.93 2.99 0.67

0.44 23.76 1.15 1.26 0.53

Table VI: LBM overhead in μs based on processing 10K
packets on the RX path. For each subsystem, the 1st row is
for normal LBM and the 2nd row is for LBM-JIT. In most
cases, the overhead of is within 1 μs when JIT is enabled.

rule code generation backend is abstracted from the specific
subsystem the rules will apply to. As such, the only changes
required to support NFC are to include a symbol descriptor
table for each variable exposed to the user space by the kernel.
Once these changes are incorporated, LBMTOOL accepts LBM
filters with NFC protocol fields and compiles them into eBPF
instructions.

B. Benchmark Setup

We performed all of our benchmarks on a workstation with
a 4-core Intel i5 CPU running at 3.2 GHz and 8 GB memory.
The peripheral used during testing include a 300 Mbps USB
2.0 WiFi adapter, a Bluetooth 4.0 USB 2.0 adapter, and a
500 GB USB 3.0 external storage device. Depending on the
benchmark, some subset of devices were connected.

We list all the LBM rules used during the benchmarks
in Table V. We deploy all the rules on the RX path, since our
protection target is the host machine. In addition to the “Stack
Protection” rules mentioned in the case studies, we include
“USB-3”, a user defined rule similar to usb.serial == "7777"

which drops the USB packet if the sending device’s serial
number is 7777. As no devices that we test have a serial
number matching this pattern, we mainly use this rule for the
scalability benchmark.

C. Micro-Benchmark

For USB testing, we load LBM rules “USB-1” and “USB-
2” into the system. We then capture 10K USB packets on the
RX path from the WiFi adapter. As shown in the first two
rows of Table VI, the average overhead is 1.26 μs per packet.
When JIT is enabled, the overhead is reduced to 0.55 μs.
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Figure 6: filebench across different kernel configurations.
All configurations achieve similar throughputs, meaning a
minimum performance impact from LBM.

For Bluetooth testing, we load LBM rules “HCI-1” and
“L2CAP-1” into the system. We implement a simple L2CAP
client/server protocol based on PyBluez [1] to generate 10K
packets on the RX path for the HCI and L2CAP layers,
respectively. As shown in the last four rows of Table VI, the
average overheads are 2.81 μs for HCI and 2.93 μs for L2CAP.
Again, with the help of JIT, we can reduce the overhead to
around 1 μs.

Takeaway: the general overhead introduced by LBM is
around 1 μs for most cases.

D. Macro-Benchmark

For USB, we load the rules “USB-1” and “USB-2" and use
filebench [50] to measure the throughput of the USB 3.0
external storage device. We chose the “fileserver” workload
model with 10K files, 128KB and 1MB mean file sizes, 10
working threads, and 10-min running time. This workload
generates roughly 1GB and 10GBs of files, respectively,
within the storage device. As shown in Figure 6, all kernel
configurations achieve similar throughput during our testing.
When the mean file size is 128KB, the total file size (1 GB)
can easily fit into the system page cache. Thus, we are able
to achieve close to 500 MB/s throughput (faster than the hard
drive’s maximum speed of 150 MB/s). When the mean file
size is 1MB, the total file size (10 GB) cannot completely fit
into the page cache, thus resulting in much lower throughput.

For Bluetooth, we load the rules “HCI-1” and “L2CAP-
1” and use l2ping [49] to benchmark the Round-Trip-Time
(RTT) for 10K pings. As with the USB testing, all kernel
configurations achieve similar RTTs of around 5 ms, as shown
in Figure 7. Because the overhead of LBM is under 1 μs in
general (Section V-C), the overhead contributed to the RTT
measurement is negligible.

To double-check that LBM introduces a minimal overhead
across the whole system, we use lmbench [55] to benchmark
the whole system across different kernel configurations. The
complete summary is available in Appendix C. In short, LBM
achieves comparable performance with the vanilla kernel.
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Figure 7: RTT of l2ping in milliseconds (lower is better)
based on 10K pings, across different kernel configurations. All
configurations achieve similar throughputs, meaning a minimal
performance impact from LBM.
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Figure 8: LBM overhead in μs based on varying numbers of
rules. While the general overhead increases as the number of
rules increases, the overhead of going through each individual
rule decreases, thus the total overhead is essentially amortized.

Takeaway: the overhead introduced by LBM is negligible
for applications and for the system as a whole.

E. Scalability

To understand the scalability of LBM, we load the rule
“USB-3” into the RX path once, 10 times, and 100 times.
As in the micro-benchmark, we record 10K USB packets
generated by the USB WiFi adapter and compute the overhead
of LBM going through these rules for each packet. As shown
in Figure 8, while the total overhead increases as the number
of rules increases, the average overhead of checking individual
rules decreases. The average overhead was 0.83 μs when there
was only one rule loaded. It decreased to 0.32 μs when there
were 100 rules loaded. Under JIT, the overhead was further
reduced to 0.23 μs. This might be the result of increased
cache hits from accessing the same rule in a loop. Even for
different rules, it is possible to observe this amortization effect,
as long as each rule occupies a different cache line. Also, in
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Figure 9: LBM vs. USBFILTER benchmark using
filebench with 10 same rules loaded respectively.
LBM introduces a minimum overhead comparing to the stock
kernel and performs better than USBFILTER in general.

general, more complicated rules will also induce more runtime
overhead.

We then compare LBM with USBFILTER using
filebench.3 Except the difference in kernel versions4, we
ran LBM and USBFILTER on the same physical machine. To
set up the benchmark, we load “USB-3” into the RX path 10
times on LBM and load an equivalent rule the same number
of times into USBFILTER. As shown in Figure 9, both LBM
and LBM-JIT show a minimum overhead comparing to the
stock kernel, and provide better throughput than USBFILTER
regardless the mean file size. This could be the result of both
kernel code improvements across versions and the design of
LBM (e.g., due to its use of eBPF). The throughput boost
is even clearer when the mean file size is 1MB and JIT is
enabled. Compared to USBFILTER, LBM-JIT improves the
throughput by roughly 60%.

Finally, we compare LBM with USBFILTER and USBFire-
wall using dd on VFAT filesystem with direct I/O enabled to
bypass the page cache. Since USBFirewall does not support
loading rules from the user space directly, we statically built
these 10 rules when compiling USBFirewall. As shown in Fig-
ure 10, comparing to their stock versions, all the solutions
show minimum overheads. The throughput of USBFirewall
does not vary much based on the block size. We tried both
the native FreeBSD version of dd and the GNU version. Both
demonstrate similar throughput regardless the block size. We
double check this by increasing the block size to 1 MB. When
the block size is beyond 16 KB, both LBM and USBFILTER
show better throughput than USBFirewall. Similarly, both
LBM and LBM-JIT have better throughput than USBFILTER.

Takeaway: compared to other state-of-the-art solutions,
LBM provides better scalability and performance.

3 Due to a kernel bug within USBFILTER, the front USB 3.0 ports could
not support USB 3.0 devices. We switched to the rear USB 3.0 ports in this
testing. We also tried to run USBFirewall. Unfortunately, FreeBSD does not
support filebench or EXT4 filesystem used by our external drive.

4LBM is running Linux kernel 4.13 while USBFILTER runs 3.13.
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Figure 10: LBM vs. USBFILTER vs. USBFirewall benchmark
using dd with 10 same rules loaded respectively. Comparing to
their stock versions, all the solutions show minimum overhead.
USBFirewall does not vary much based on the block size.
LBM performs better than USBFirewall and USBFILTER
when block size is beyond 16 KB in general.

VI. DISCUSSION

A. LBM vs. USBFILTER vs. USBFirewall

The LBM filter DSL is more expressive than the USB-
FILTER policy, which only supports concatenating equality
checks using logical AND. The LBM filter DSL supports
different arithmetic and logical operations, as well as changing
of operation precedence using parentheses. Compared to US-
BFILTER, LBM USB also doubles the number of protocol
fields exposed to the user space, although LBM does not
support pinning applications to peripherals.5 Nevertheless,
LBM enables more complicated and powerful filtering rules
than USBFILTER. Besides, any LUM can be converted into
an LBM module without much hassle. LBM USB has also
fully replicated functionality provided by USBFirewall, which
required a kernel recompile and reboot to make any rule
changes.

B. L2CAP Signaling in Bluetooth

Unlike L2CAP signaling in BLE, where each L2CAP packet
only carries a single command, L2CAP signaling in the Blue-
tooth classic may have packets containing multiple commands.
As we saw in the BlueBorne defense case study, if there is
a malicious configuration response command contained in a
L2CAP signaling packet, the entire payload will be dropped,
including other “innocent” commands if they exist.

One possible solution to such coarse-grained drops is to
separate each command from the same L2CAP signaling
packet into standalone packets. This requires packet parsing
and duplication in the early stage. Another solution is to add
a new customized hook in the place where each command
is extracted by the L2CAP stack. Our current implementation

5USBFILTER instrumented some USB device driver to support application
pinning. It is ad-hoc, rather than a generic method.
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does not apply either solution, for performance and simplicity
considerations. From a security perspective, if one command
from a certain device is recognized as malicious, it seems
reasonable to drop other commands from the same device.

C. BPF Memory Write

For security considerations, we forbid memory writes in
LBM eBPF programs. While this restriction improves the
kernel’s security posture towards user-loaded code, we also
lose a powerful feature provided by eBPF and BPF helpers—
packet mangling, which allows for fields to be changed on
the fly. This feature has been employed by the networking
subsystem, e.g., for changing the source IP address and/or
the destination port number. For LBM, one potential use of
memory write is removing only malicious commands while
keeping others within the same L2CAP signaling packet intact.
As an intermediate step to enable memory write in LBM
programs, we can restrict the memory write ability to certain
BPF helpers. As long as these BPF helpers are safe, the
BPF verifier can still verify these programs by rejecting store
instructions as before.

D. BPF Helper Kernel Modules

Ideally, we should allow BPF helpers for each subsystem
to be implemented as a standalone kernel module, which can
be plugged in when needed. Unfortunately, this is forbidden
by the current eBPF design, and we follow the same design
principles for similar reasons. First of all, BPF helpers are
like syscalls in a system. The number of a BPF helper is like
the syscall number, which is part of the Application Binary
Interface (ABI) of the system. Although by introducing LBM,
we have essentially namespaced LBM BPF helpers from other
general and networking-specific helpers, these helpers still
share the same LBM namespace regardless their respective
subsystems. As a result, the number of a LBM BPF helper
implemented within a kernel module cannot be decided until
all used numbers are known, including the ones defined by
LBM internals and those defined in other BPF helper modules.
A possible solution here is to further namespace LBM BPF
helpers per subsystem, e.g., have USB helpers always start
with 100, Bluetooth helpers with 200, etc. Note that this
solution would consequently limit the number of helpers each
subsystem could have.

E. LLVM Support

LLVM began to support eBPF as an architectural backend in
early 2015 [71]. A typical workflow involves writing an eBPF
filter in C and compiling it using Clang. eBPF loaders such as
tc are able to parse the generated ELF file and load it into the
kernel [18]. While LLVM brings C into eBPF programming,
easing filter writing for C developers, we realized that eBPF
programming might still be challenging for sysadmins, who
need an easy and intuitive way to write eBPF filters; we
designed the LBM filter DSL with this in mind. We are
planning to support LLVM as well by adding a new eBPF
loader into LBM.

VII. LIMITATIONS

A. Stateless vs. Stateful Policy

LBM filters are designed to be policy-independent, although
a large part of the case studies presented stateless polices.
Whether the policy is stateless or stateful essentially depends
on what protocol fields and packet data are exposed to the
user space. For example, USB does not have a “session”
concept, and we could write useful LBM filters based on
just the device information (a.k.a., stateless policy). Bluetooth
has the “connection” concept in the L2CAP layer (like TCP
connections), so we could write LBM filters using this field
(a.k.a., stateful policy). Besides protocols fields defined by
standards, the Linux kernel also maintains some bookkeeping
data structures, e.g., counters. Exposing these kernel fields
would also help to create stateful polices.

The current LBM USB and Bluetooth implementations
focus on exposing basic protocol fields rather than stateful
variables. Nevertheless, we have noticed the potential of
stateful policies. For instance, we could write a stateful policy
to detect BleedingBit [12] attacks by observing a sequence
of multiple BLE advertising packets with a certain bit off
followed by another BLE advertising packet with that bit on.

B. DMA-Oriented Protocols

We have not instantiated LBM on Thunderbolt, HDMI, or
DisplayPort, although it is indeed possible to support these
DMA-oriented protocols using LBM.6 Since LBM works
at the packet layer, we are able to filter packets for these
protocols as long as the concept of packet, given a protocol,
is defined by the standard and implemented by the kernel.
For example, DisplayPort defines different packets to carry
different payloads such as stream and audio [46], implemented
as such within the kernel. Thunderbolt, however, is a propri-
etary standard. It is not clear whether the protocol itself is
packetized, and the only packet-level message available within
the kernel is Thunderbolt control request/response instead of
data transfer. Another challenge to supporting these protocols
comes from determining the proper hook placement for com-
plete mediation. DisplayPort is not a standalone subsystem
but rather a component of Direct Rendering Manager (DRM)
inside the kernel. Thunderbolt does not have a core layer but
only provides few drivers due to the limited hardware devices.

C. Operating Systems Dependency

Although LBM is built upon the Linux kernel, it is possible
to apply LBM to other operating systems. To achieve that, we
need the target operating system to support a generic in-kernel
packet filtering mechanism such as eBPF. The classic BPF is
not enough because LBM relies on calling kernel APIs within
filters to access different kernel data. While it is non-trivial to
extend the classic BPF to eBPF, some porting effort has been
done for FreeBSD to support eBPF [35]. The other require-
ment is a software architecture enabling complete-mediation
hook placement for different peripherals. For instance, it is

6USB is also DMA-oriented.
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possible to mediate all USB packets within the FreeBSD
USB subsystem, as proven by USBFirewall. Nevertheless, it
might be challenging to port LBM to Windows, since it has
a different packet filtering mechanism [85] and it is closed-
source.

D. lbmtool Limitations

LBMTOOL currently does not support LBM filter consis-
tency checking, meaning it is possible to have two LBM
filters conflict with each other. Regarding eBPF instruction
generation, LBMTOOL does not support stack allocations when
the return value of BPF helpers is beyond 8 bytes (width of an
eBPF register). Manual assembly is needed to manipulate the
stack for those BPF helpers. LBMTOOL also does not support
lazy evaluation on BPF helpers. They are always called at first
to retrieve all the values of protocols fields needed before the
actual evaluation of the LBM filter DSL expression. These are
merely the current limitations of the custom compiler itself and
could be eliminated with additional code.

VIII. RELATED WORK

Peripheral Security Defenses: A number of solutions have
considered aspects of defenses against malicious peripherals.
By treating USB kernel drivers as capabilities, GoodUSB [76]
asks for user’s expectation about the device before loading
the drivers. Cinch [9] interposes on the USB bus by isolating
the suspicious USB device within a VM environment, with
the help of IOMMU and hypervisors, but imposes substantial
performance overhead and considerable architectural changes
to systems it is deployed upon. USBFILTER [79] is a USB
packet filtering mechanism built into the Linux kernel. Users
can write simple filtering rules and pass them into the kernel
space. USBFirewall [43] protects the USB protocol stack
within FreeBSD from malformed packets by generating the
USB packet parser from Haskell. Other solutions focus on
developing more secure devices; for example Kells [20] and
ProvUSB [77] protect USB devices from malicious hosts
at the granularity of partitions and blocks, respectively, but
require the deployment of new peripheral devices. Solutions
such as FirmUSB [39] allow analysis of a device for malicious
intent but require a means of accessing its firmware. For more
details regarding other related defenses, we refer readers
to a systematic study on USB security [80]. Thunderbolt 3
also introduced security levels, and boltctl [44] is used to
set security levels for different peripherals on Linux. These
security levels are designed to control the creation of PCIe
channels from peripherals rather than high-level packets.
As previously discussed, LBM is designed as a generic
framework working at the packet layer, not only enabling
existing solutions such as USBFILTER and USBFirewall,
but also covering other peripherals such as Bluetooth and NFC.

eBPF-based Solutions: BPF Compiler Collections (BCC) [42]
provides a Python interface for writing, compiling, and loading
eBPF programs. Its backend is still LLVM and C programing.
eXpress DataPath (XDP) [36] provides eBPF hooks within

the NIC drivers, filtering packets before skb is created to
store the packet. Network Flow Processor (NFP) [45] allows
filtering packets within the NIC by JITing eBPF programs
into native NIC instructions and running them on the NIC
directly. eBPF tracing tools [33] provide an alternative for
DTrace on Linux. Bpfilter [73] is an ongoing project trying
to replace the iptables firewall. InKeV [3] is a network
virtualization solution allowing inserting network functions
dynamically using eBPF. Hyperupcalls [6] allows VMs to
load eBPF programs and asks hypervisors to execute them.
One can treat these hyperupcalls as another form of BPF
helpers. On the security side, eBPF has been hardened against
JIT spray attacks [64] and Spectre attacks [47], [72], [19].
New file mode and LSM hooks are also added for eBPF
program permission control to remove the dependency on
“CAP_SYS_ADMIN” [29]. LBM expands the scope of eBPF
usage by exploring peripheral space.

Linux Kernel Security Frameworks: Linux Security Mod-
ules (LSM) [86] is a general framework to implement MAC
on Linux, by providing hundreds of hooks for security-
sensitive operations within the kernel. Integrity Measurement
Architecture (IMA) [65] leverages TPM to measure the kernel
image as well as user-space applications. Android Security
Modules (ASM) [40] promotes security extensibility to the
Android platform, by adding new authorization hooks within
Android OS APIs. Linux Provenance Modules (LPM) [14]
provides a whole-system provenance framework by mirroring
LSM hooks. Seccomp [27] uses the classic BPF filter to limit
the number of syscalls that can be invoked by a process or
container. Landlock [66] controls how a process could access
filesystem objects by writing polices in C within applications
and compiling them into eBPF programs using LLVM. Guar-
dat [82] presents a high-level policy language for mediating
I/O events, but is implemented at the storage layer, above the
peripheral layer, and would thus not provide defenses against
protocol-level attacks. While we have seen kernel frameworks
covering different aspects of security concerns, LBM is the
first framework for unifying defenses across protocols against
malicious peripherals.

IX. CONCLUSION

In this paper we described LBM, an extensible security
framework for defending against malicious peripherals. LBM
implements a high-level filtering language for creating periph-
eral policies, which compile into eBPF instructions for loading
into the Linux kernel to provide performance and extensibil-
ity. Within this framework we added support for the USB,
Bluetooth, and NFC protocols, described the design process
of LBM, and demonstrated specific cases of how LBM could
be leveraged to harden the operating system’s protocol stacks.
Our evaluation of LBM showed that it performs as well as or
better than previous solutions, while only introducing overhead
within 1 μs per packet in most cases. LBM is practical and to
the best of our knowledge, is the first security framework de-
signed to provide comprehensive protection within the Linux
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kernel peripheral subsystem, covering different subsystems
while supporting and unifying existing defensive solutions.
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APPENDIX

A. Frontend Grammar

〈expr〉 ::= 〈logical-or〉
〈logical-or〉 ::= 〈logical-and〉 (‘||’ 〈logical-and〉)*
〈logical-and〉 ::= 〈comparison〉 (‘&&’ 〈comparison〉)*
〈comparison〉 ::= 〈atom〉 (〈comparison-op〉 〈atom〉)*
〈comparison-op〉 ::= ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ’!=’

〈access〉 ::= ‘[’ 〈number〉 ‘:’ 〈number〉 ‘]’

〈attribute〉 ::= ‘.’ 〈IDENTIFIER〉
〈struct〉 ::= 〈IDENTIFIER〉 〈attribute〉* 〈access〉?
〈number〉 ::= 〈DEC_NUMBER〉 | 〈HEX_NUMBER〉
〈string〉 ::= 〈STRING〉
〈atom〉 ::= 〈number〉 | ‘-’ 〈number〉

| 〈struct〉
| 〈string〉
| ‘(’ 〈expr〉 ‘)’

〈DEC_NUMBER〉 ::= 〈DIGIT〉+
〈HEX_NUMBER〉 ::= ‘0x’ 〈HEXDIGIT〉+
〈LETTER〉 ::= ‘a’ ... ‘z’ | ‘A’ ... ‘Z’

〈STRING〉 ::= ‘"’ (‘\"’ | /[^‘"’]/)* ‘"’

〈DIGIT〉 ::= ‘0’...‘9’

〈HEXDIGIT〉 ::= ‘a’ ... ‘f’ | ‘A’ ... ‘F’ | 〈DIGIT〉
〈IDENTIFIER〉 ::= (‘_’ | 〈LETTER〉) ( ‘_’ | 〈LETTER〉 | 〈DIGIT〉)*
Figure 11: The Extended Backus-Naur Form (EBNF) of our
constructed LBM expression grammar.

B. Compiler Example

LBM Program

usb.idVendor == 0x413c && usb.idProduct == 0x3010

Intermediate Representation

0: t1 := call(lbm_usb_get_idVendor)
1: t0 := binop(EQ, t1, 16700)
2: t3 := call(lbm_usb_get_idProduct)
3: t2 := binop(EQ, t3, 12304)
4: t4 := binop(AND, t0, t2)

eBPF Assembly

LSTART:
MOV64_REG(REG_9, REG_1)
MOV64_REG(REG_1, REG_9)
CALL_FUNC(FUNC_lbm_usb_get_idVendor)
MOV64_REG(REG_1, REG_0)
MOV64_IMM(REG_6, 1)
JMP_IMM(JEQ, REG_1, 16700, L1_)
MOV64_IMM(REG_6, 0)

L1_:
MOV64_REG(REG_1, REG_9)
CALL_FUNC(FUNC_lbm_usb_get_idProduct)
MOV64_REG(REG_2, REG_0)
MOV64_IMM(REG_3, 1)
JMP_IMM(JEQ, REG_2, 12304, L2_)
MOV64_IMM(REG_3, 0)

L2_:
JMP_IMM(JEQ, REG_6, 0, L3_)
JMP_IMM(JEQ, REG_3, 0, L3_)
MOV64_IMM(REG_4, 1)
JMP_A(L4_)

L3_: MOV64_IMM(REG_4, 0)
L4_:

JMP_IMM(JNE, REG_4, 0, L5_)
L6_: MOV64_IMM(REG_0, 0)

EXIT_INSN()
L5_: MOV64_IMM(REG_0, 1)
LEND: EXIT_INSN()

Figure 12: The compilation stages of an LBM expression.

C. lmbench

Table VII presents the complete summary of lmbench
results from Section V-D We use lmbench to benchmark
the whole system across different kernel configurations and
demonstrate that LBM does indeed introduce minimal over-
head across the whole system.
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Processor & Processes (ns)
Null call Null I/O Stat Open/Close Select TCP Signal install Signal Handle Fork Execute Exec. Shell

Vanilla 0.23 0.32 0.65 1.39 6.26 0.27 0.81 151. 497. 1425
LBM 0.22 0.32 0.66 1.38 5.65 0.27 0.80 141. 400. 1411
LBM-JIT 0.22 0.32 0.66 1.38 5.65 0.27 0.80 92.6 415. 1446

Basic integer operations (ns)
bit add div mod

Vanilla 0.2800 0.1400 6.1100 6.5700
LBM 0.2800 0.1400 6.0200 6.4900
LBM-JIT 0.2800 0.1400 6.0300 6.5300

Basic uint64 operations (ns)
bit div mod

Vanilla 0.280 12.0 11.7
LBM 0.280 12.1 11.7
LBM-JIT 0.280 12.1 11.7

Basic float operations (ns)
add mul div bogo

Vanilla 0.8400 1.3900 3.7800 1.9500
LBM 0.8400 1.3900 3.6800 1.9500
LBM-JIT 0.8400 1.3900 3.6800 1.9600

Basic Double Operations (ns)
add mul div bogo

Vanilla 0.8400 1.3900 5.6200 3.9000
LBM 0.8400 1.3900 5.6300 3.9000
LBM-JIT 0.8400 1.3900 5.6500 3.9100

Context Switching (ns)
2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K

Vanilla 1.7300 1.6600 2.4000 4.2000 5.0700 4.24000 5.79000
LBM 1.6500 1.5800 2.1900 3.3800 4.9100 4.11000 7.77000
LBM-JIT 1.6100 1.5000 2.2600 3.2200 7.5000 3.28000 7.55000

Local Communication Latencies (us)
2p/0K context switch Pipe AF UNIX UDP TCP TCP/connection

Vanilla 1.730 5.028 6.97 9.127 11.5 17.
LBM 1.650 4.998 6.31 8.973 11.3 17.
LBM-JIT 1.610 5.068 7.27 8.966 11.4 17.

File & VM system latencies (us)
0K File Cre. 0K File Del. 10K File Cre. 10K File Del. Mmap Latency Prot. Fault Page Fault 100 FD Select

Vanilla 5.7323 3.8630 13.3 6.8787 6493.0 0.501 0.22380 1.609
LBM 5.7247 3.8566 13.2 7.0278 6518.0 0.502 0.22080 1.602
LBM-JIT 5.7531 3.8511 13.7 6.8543 6523.0 0.500 0.22310 1.613

Local Communication bandwidths (MB/s), Larger is better
Pipe AF UNIX TCP File Reread Mmap Reread Bcopy (libc) Bcopy (custom) Memory Read Memory Write

Vanilla 5597 12.K 7539 7455.9 15.0K 8126.0 5886.8 14.K 8528.
LBM 5606 12.K 7365 7473.6 15.0K 8193.2 5911.6 14.K 8535.
LBM-JIT 5686 12.K 7466 7494.9 15.0K 8169.2 5909.9 14.K 8542.

Memory latencies (ns)
Mhz L1 Cache L2 Cache Main memory Random memory

Vanilla 3192 1.1140 3.3420 15.2 84.1
LBM 3192 1.1140 3.3420 14.6 84.9
LBM-JIT 3192 1.1140 3.3430 15.2 83.9

Table VII: lmbench results for a Vanilla kernel, LBM, and LBM-JIT.
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