
Florida Institute for Cybersecurity (FICS) Research

ACM CCS’17, Dallas, TX
November 2nd, 2017

FirmUSB:
Vetting USB Device Firmware using

Domain Informed Symbolic Execution
Grant Hernandez & Farhaan Fowze, Dave Tian, Tuba Yavuz, Kevin Butler

Florida Institute for Cybersecurity (FICS) Research

USB is Everywhere

2

Florida Institute for Cybersecurity (FICS) Research

What about USB security?

3

The USB specifications support additional capabilities for
security, but original equipment manufacturers (OEM’s)
decide whether or not to implement these capabilities

in their products.

“

 — USB Implementers Forum, 2014

 “

Florida Institute for Cybersecurity (FICS) Research

What is BadUSB?

4

Florida Institute for Cybersecurity (FICS) Research

What is BadUSB?
• A reprogrammed USB device with modified functionality

4

Florida Institute for Cybersecurity (FICS) Research

What is BadUSB?
• A reprogrammed USB device with modified functionality
• BadUSB exploits trust in physical device appearance

4

Florida Institute for Cybersecurity (FICS) Research

What is BadUSB?
• A reprogrammed USB device with modified functionality
• BadUSB exploits trust in physical device appearance
• Example: USB Flash drive reflashed to become a

keyboard or network card

• Enables keystroke injection to quickly backdoor a
system or hijack all network connections

4

Florida Institute for Cybersecurity (FICS) Research

What is BadUSB?
• A reprogrammed USB device with modified functionality
• BadUSB exploits trust in physical device appearance
• Example: USB Flash drive reflashed to become a

keyboard or network card

• Enables keystroke injection to quickly backdoor a
system or hijack all network connections

4

Operates completely within the USB Protocol.
No exploitation required and it is OS independent

Florida Institute for Cybersecurity (FICS) Research

USB Descriptor Hierarchy

5

Device Descriptor

Configuration
Descriptor

Interface
Descriptor

Endpoint
Descriptor

Configuration
Descriptor

Endpoint
Descriptor

Interface
Descriptor

Endpoint
Descriptor

• A device describes its functionality 
using descriptors

• These are communicated to the host as
data payloads during enumeration

Florida Institute for Cybersecurity (FICS) Research

USB Enumeration

6

Florida Institute for Cybersecurity (FICS) Research

USB Enumeration

6

SetAddress(n)

Florida Institute for Cybersecurity (FICS) Research

USB Enumeration

6

SetAddress(n)

USB ACK

Florida Institute for Cybersecurity (FICS) Research

USB Enumeration

6

SetAddress(n)

USB ACK

GetDescriptor(Device)

Florida Institute for Cybersecurity (FICS) Research

USB Enumeration

6

SetAddress(n)

USB ACK

GetDescriptor(Device)

VID: SanDisk, PID: Flash Drive

Florida Institute for Cybersecurity (FICS) Research

USB Enumeration

6

SetAddress(n)

USB ACK

GetDescriptor(Device)

VID: SanDisk, PID: Flash Drive

GetDescriptor(Interface)

Florida Institute for Cybersecurity (FICS) Research

USB Enumeration

6

SetAddress(n)

USB ACK

GetDescriptor(Device)

VID: SanDisk, PID: Flash Drive

GetDescriptor(Interface)

Mass Storage

Florida Institute for Cybersecurity (FICS) Research

USB Enumeration

6

SetAddress(n)

USB ACK

GetDescriptor(Device)

VID: SanDisk, PID: Flash Drive

GetDescriptor(Interface)

Human Interface Device (HID)

Florida Institute for Cybersecurity (FICS) Research

Enter FirmUSB

7

Florida Institute for Cybersecurity (FICS) Research

Enter FirmUSB
• Analyze USB firmware to determine intent

using static and symbolic analysis

7

Intel 
8051

angr Fie (Klee)

Symbolic Execution 
Engines

Florida Institute for Cybersecurity (FICS) Research

Enter FirmUSB
• Analyze USB firmware to determine intent

using static and symbolic analysis
• Extend existing symbolic execution support 

(Fie and angr) to the 8051 CPU architecture

7

Intel 
8051

angr Fie (Klee)

Symbolic Execution 
Engines

Florida Institute for Cybersecurity (FICS) Research

Enter FirmUSB
• Analyze USB firmware to determine intent

using static and symbolic analysis
• Extend existing symbolic execution support 

(Fie and angr) to the 8051 CPU architecture
• Specialize and tailor symbolic engines via

USB domain knowledge

7

Intel 
8051

angr Fie (Klee)

Symbolic Execution 
Engines

Florida Institute for Cybersecurity (FICS) Research

Enter FirmUSB
• Analyze USB firmware to determine intent

using static and symbolic analysis
• Extend existing symbolic execution support 

(Fie and angr) to the 8051 CPU architecture
• Specialize and tailor symbolic engines via

USB domain knowledge
• Develop a USB firmware semantic query

engine which enables high-level analysis of
firmware images

7

Intel 
8051

angr Fie (Klee)

Symbolic Execution 
Engines

Florida Institute for Cybersecurity (FICS) Research

Where does FirmUSB fit?

8

Host

Applications

OS Kernel

USB Drivers

USB Hub

Florida Institute for Cybersecurity (FICS) Research

Where does FirmUSB fit?

8

USB Controller

Flash Chip

Host

Applications

OS Kernel

USB Drivers

USB Hub

Florida Institute for Cybersecurity (FICS) Research

Where does FirmUSB fit?

8

USB Controller

Flash Chip

Host

Applications

OS Kernel

USB Drivers

FirmUSB

USB Hub

Florida Institute for Cybersecurity (FICS) Research

Symbolic Execution

unsigned short pincode = 0x????;

if(pincode % 10 == 0) {

 if(pincode > 1000) {

 if((pincode >> 2) & 0x43) {

 printf(“Correct!\n”);

 }

 }

}

9

Which pin codes are valid?

Florida Institute for Cybersecurity (FICS) Research

Symbolic Execution

unsigned short pincode = 0x????;

if(pincode % 10 == 0) {

 if(pincode > 1000) {

 if((pincode >> 2) & 0x43) {

 printf(“Correct!\n”);

 }

 }

}

9

Which pin codes are valid?

Use symbolic execution to
find a program path that

reaches ‘Correct’

Florida Institute for Cybersecurity (FICS) Research

Symbolic Execution

unsigned short pincode = 0x????;

if(pincode % 10 == 0) {

 if(pincode > 1000) {

 if((pincode >> 2) & 0x43) {

 printf(“Correct!\n”);

 }

 }

}

9

Which pin codes are valid?

Use symbolic execution to
find a program path that

reaches ‘Correct’

Solve for pin using
constraint solver to

find valid pins

Florida Institute for Cybersecurity (FICS) Research

Symbolic Execution (Cont.)

unsigned short pincode = 0x????;

if(pincode % 10 == 0) {

 if(pincode > 1000) {

 if((pincode >> 2) & 0x43) {

 printf(“Correct!\n”);

 }

 }

}

10

Start

pin % 10 == 0

Correct!Incorrect

pin % 10 != 0

pin ≤ 1000

(pin >> 2) & 0x43 == 0

pin > 1000

(pin >> 2) & 0x43 != 0

Florida Institute for Cybersecurity (FICS) Research

Symbolic Execution (Cont.)

unsigned short pincode = 0x????;

if(pincode % 10 == 0) {

 if(pincode > 1000) {

 if((pincode >> 2) & 0x43) {

 printf(“Correct!\n”);

 }

 }

}

10

Start

pin % 10 == 0

Correct!Incorrect

pin % 10 != 0

pin ≤ 1000

(pin >> 2) & 0x43 == 0

pin > 1000

(pin >> 2) & 0x43 != 0

Florida Institute for Cybersecurity (FICS) Research

Symbolic Execution (Cont.)

unsigned short pincode = 0x????;

if(pincode % 10 == 0) {

 if(pincode > 1000) {

 if((pincode >> 2) & 0x43) {

 printf(“Correct!\n”);

 }

 }

}

10

Start

pin % 10 == 0

Correct!Incorrect

pin % 10 != 0

pin ≤ 1000

(pin >> 2) & 0x43 == 0

pin > 1000

(pin >> 2) & 0x43 != 0

Florida Institute for Cybersecurity (FICS) Research

Symbolic Execution (Cont.)

unsigned short pincode = 0x????;

if(pincode % 10 == 0) {

 if(pincode > 1000) {

 if((pincode >> 2) & 0x43) {

 printf(“Correct!\n”);

 }

 }

}

10

Start

pin % 10 == 0

Correct!Incorrect

pin % 10 != 0

pin ≤ 1000

(pin >> 2) & 0x43 == 0

pin > 1000

(pin >> 2) & 0x43 != 0

Florida Institute for Cybersecurity (FICS) Research

Symbolic Execution (Cont.)

unsigned short pincode = 0x????;

if(pincode % 10 == 0) {

 if(pincode > 1000) {

 if((pincode >> 2) & 0x43) {

 printf(“Correct!\n”);

 }

 }

}

10

Start

pin % 10 == 0

Correct!Incorrect

pin % 10 != 0

pin ≤ 1000

(pin >> 2) & 0x43 == 0

pin > 1000

(pin >> 2) & 0x43 != 0

Florida Institute for Cybersecurity (FICS) Research

Symbolic Execution (Cont.)

unsigned short pincode = 0x????;

if(pincode % 10 == 0) {

 if(pincode > 1000) {

 if((pincode >> 2) & 0x43) {

 printf(“Correct!\n”);

 }

 }

}

10

pincode = [20930, 19190, …]

Start

pin % 10 == 0

Correct!Incorrect

pin % 10 != 0

pin ≤ 1000

(pin >> 2) & 0x43 == 0

pin > 1000

(pin >> 2) & 0x43 != 0

Florida Institute for Cybersecurity (FICS) Research

Intel 8051

11

8051
8-bit MCU

• Harvard Architecture
• 44 instructions
• 256 encodings
• 128 bytes of RAM
• 32 registers
• 64KB of code

CODE

0x0000

0xffff

XRAM RAM

SFR

0x00

0xff

0x80

0xff

Florida Institute for Cybersecurity (FICS) Research

Why 8051?

12

Florida Institute for Cybersecurity (FICS) Research

Why 8051?

12

• The original BadUSB work hijacked a Phison 2251-03 firmware

Florida Institute for Cybersecurity (FICS) Research

Why 8051?

12

• The original BadUSB work hijacked a Phison 2251-03 firmware
• Many Phison USB controllers use 8051

Florida Institute for Cybersecurity (FICS) Research

Why 8051?

12

• The original BadUSB work hijacked a Phison 2251-03 firmware
• Many Phison USB controllers use 8051
• No symbolic execution support for angr or Fie

1. Create Intermediate Representation lifter (VEX IR & LLVM IR)

2. Create architecture definition (Registers, memory map, I/O & interrupts)

Florida Institute for Cybersecurity (FICS) Research

Supporting 8051

13

int add() {
 unsigned char i, a = 0;

 for(i = 0; i < 100; i++)
 a += 1;

 return a;
}

C Source
Code

Compiler
7f 64 7e 00

0e 8f 05 ed

14 ff 70 f8

ff 8e 82 8f

83 22

Binary
Firmware

00 | ------ IMark(0x66, 1, 0) ------
05 | t24 = Get(R6)
06 | t23 = Add8(t24,0x01)
07 | Put(R6) = t23
08 | ------ IMark(0x67, 2, 0) ------
12 | t28 = i8051g_memory(0x5,0x00)
13 | STle(t28) = Get(R7)
14 | ------ IMark(0x69, 1, 0) ------
17 | t30 = Get(R5)
18 | ------ IMark(0x6a, 1, 0) ------
19 | t31 = Sub8(t30,0x01)
20 | PUT(A) = t31
21 | ------ IMark(0x6b, 1, 0) ------
22 | Put(R7) = t31
23 | PUT(ip) = 0x0000006c
24 | ------ IMark(0x6c, 2, 0) ------
25 | t34 = CmpNE8(t31,0x00)
26 | if (t34) { PUT(ip) = 0x66; }
NEXT: PUT(ip) = 0x0000006e;

VEX IR of
block 0x66

Lifter
0x66: inc R6
0x67: mov (0x5), R7
0x69: mov A, R5
0x6a: dec A
0x6b: mov R7, A
0x6c: jnz $-8

0x6e: mov R7, A
0x6f: mov (0x82), R6
0x71: mov (0x83), R7
0x73: ret

0x62: mov R7, #0x64
0x64: mov R6, #0x00

8051 ASM

Disasm.
CFG

recovery

angr Fie

VEX Lifter

VEX IR

LLVM Lifter

Results

7f 64 7e 00

0e 8f 05 ed

14 ff 70 f8

ff 8e 82 8f

83 22

LLVM IR

Binary
Firmware

Florida Institute for Cybersecurity (FICS) Research

Supporting 8051

13

int add() {
 unsigned char i, a = 0;

 for(i = 0; i < 100; i++)
 a += 1;

 return a;
}

C Source
Code

Compiler
7f 64 7e 00

0e 8f 05 ed

14 ff 70 f8

ff 8e 82 8f

83 22

Binary
Firmware

00 | ------ IMark(0x66, 1, 0) ------
05 | t24 = Get(R6)
06 | t23 = Add8(t24,0x01)
07 | Put(R6) = t23
08 | ------ IMark(0x67, 2, 0) ------
12 | t28 = i8051g_memory(0x5,0x00)
13 | STle(t28) = Get(R7)
14 | ------ IMark(0x69, 1, 0) ------
17 | t30 = Get(R5)
18 | ------ IMark(0x6a, 1, 0) ------
19 | t31 = Sub8(t30,0x01)
20 | PUT(A) = t31
21 | ------ IMark(0x6b, 1, 0) ------
22 | Put(R7) = t31
23 | PUT(ip) = 0x0000006c
24 | ------ IMark(0x6c, 2, 0) ------
25 | t34 = CmpNE8(t31,0x00)
26 | if (t34) { PUT(ip) = 0x66; }
NEXT: PUT(ip) = 0x0000006e;

VEX IR of
block 0x66

Lifter
0x66: inc R6
0x67: mov (0x5), R7
0x69: mov A, R5
0x6a: dec A
0x6b: mov R7, A
0x6c: jnz $-8

0x6e: mov R7, A
0x6f: mov (0x82), R6
0x71: mov (0x83), R7
0x73: ret

0x62: mov R7, #0x64
0x64: mov R6, #0x00

8051 ASM

Disasm.
CFG

recovery

angr Fie

VEX Lifter

VEX IR

LLVM Lifter

Results

7f 64 7e 00

0e 8f 05 ed

14 ff 70 f8

ff 8e 82 8f

83 22

LLVM IR

Binary
Firmware

~3000  
lines of C

~2000  
lines of Java

Florida Institute for Cybersecurity (FICS) Research

Lifting Challenges

14

Florida Institute for Cybersecurity (FICS) Research

Lifting Challenges
• Supporting condition bit-codes was cumbersome and required 

many IR statements to be emitted

14

Florida Institute for Cybersecurity (FICS) Research

Lifting Challenges
• Supporting condition bit-codes was cumbersome and required 

many IR statements to be emitted
• Overlapping RAM, XRAM, and CODE regions (address 0x0)

14

Florida Institute for Cybersecurity (FICS) Research

Lifting Challenges
• Supporting condition bit-codes was cumbersome and required 

many IR statements to be emitted
• Overlapping RAM, XRAM, and CODE regions (address 0x0)

14

Typical microcontroller patterns are  
difficult to support with LLVM and VEX

Florida Institute for Cybersecurity (FICS) Research

USB Signatures
• Use USB domain knowledge to find key parts of firmware images
• Find code references (XREFs) to these addresses and feed them as targets for

the symbolic execution stage

15

Pattern Name Byte Pattern Data Address Cross-Reference

DEVICE_DESC 12 01 00 ?? 00 0x302b 0xb89

CONFIG_DESC 09 02 ?? ?? ?? 01 00 0x303d 0xbd5

HID_REPORT 05 01 09 06 A1 0x3084 0xbf1

Table: Found patterns in the Phison firmware.

Florida Institute for Cybersecurity (FICS) Research

USB Signatures
• Use USB domain knowledge to find key parts of firmware images
• Find code references (XREFs) to these addresses and feed them as targets for

the symbolic execution stage

15

Pattern Name Byte Pattern Data Address Cross-Reference

DEVICE_DESC 12 01 00 ?? 00 0x302b 0xb89

CONFIG_DESC 09 02 ?? ?? ?? 01 00 0x303d 0xbd5

HID_REPORT 05 01 09 06 A1 0x3084 0xbf1

Table: Found patterns in the Phison firmware.

[Length] [Type] […]

Florida Institute for Cybersecurity (FICS) Research

Query Engine & Semantic Analysis

16

Florida Institute for Cybersecurity (FICS) Research

Query Engine & Semantic Analysis
• Employ static and symbolic analysis to answer questions about the firmware

16

Florida Institute for Cybersecurity (FICS) Research

Query Engine & Semantic Analysis
• Employ static and symbolic analysis to answer questions about the firmware
• Write in Python (for angr) or C++ (for Fie)

16

Florida Institute for Cybersecurity (FICS) Research

Query Engine & Semantic Analysis
• Employ static and symbolic analysis to answer questions about the firmware
• Write in Python (for angr) or C++ (for Fie)
• Example query:

1. Recover CFG, find USB signatures statically

2. Symbolically execute towards targets

3. For each found target, print the path condition

16

$./firmusb —i firmware1.bin -q query-type -o fw1.log

Florida Institute for Cybersecurity (FICS) Research

Semantic Analysis — Query 1

17

Florida Institute for Cybersecurity (FICS) Research

Semantic Analysis — Query 1

17

Query 1: The Claimed Identity

Florida Institute for Cybersecurity (FICS) Research

Semantic Analysis — Query 1

1. Determine the USB type through a combination of static and symbolic analysis

17

Query 1: The Claimed Identity

Florida Institute for Cybersecurity (FICS) Research

Semantic Analysis — Query 1

1. Determine the USB type through a combination of static and symbolic analysis

2. Find USB descriptor signatures and determine referencing code addresses

17

Query 1: The Claimed Identity

Florida Institute for Cybersecurity (FICS) Research

Semantic Analysis — Query 1

1. Determine the USB type through a combination of static and symbolic analysis

2. Find USB descriptor signatures and determine referencing code addresses

3. Symbolically execute to these ‘targets’ and determine path conditions

17

Query 1: The Claimed Identity

Florida Institute for Cybersecurity (FICS) Research

Symbolic Set Algorithm

18

Florida Institute for Cybersecurity (FICS) Research

Symbolic Set Algorithm

• Determine a more
minimal set of symbolic
variables

18

Florida Institute for Cybersecurity (FICS) Research

Symbolic Set Algorithm

• Determine a more
minimal set of symbolic
variables

• Relies on knowledge 
of 8051 interrupts

18

Florida Institute for Cybersecurity (FICS) Research

Symbolic Set Algorithm

• Determine a more
minimal set of symbolic
variables

• Relies on knowledge 
of 8051 interrupts

• Greatly speeds up
symbolic execution vs.
fully-symbolic 
(less state explosion)

18

Florida Institute for Cybersecurity (FICS) Research

USB Domain Constraining
• Speeds up symbolic execution by lowering state explosion
• Focus only on the code which interacts with USB
• Example: apply constraints to the USB I/O SETUP to assume certain values

19

Symbol(SETUP[1]) == 6 // bRequest - Descriptor
Symbol(SETUP[2]) == 34 // wValueH - HID Report
Symbol(SETUP[3]) == 0 // wIndexL - Keyboard Index

Florida Institute for Cybersecurity (FICS) Research

USB Domain Constraining
• Speeds up symbolic execution by lowering state explosion
• Focus only on the code which interacts with USB
• Example: apply constraints to the USB I/O SETUP to assume certain values

19

Symbol(SETUP[1]) == 6 // bRequest - Descriptor
Symbol(SETUP[2]) == 34 // wValueH - HID Report
Symbol(SETUP[3]) == 0 // wIndexL - Keyboard Index

Florida Institute for Cybersecurity (FICS) Research

USB Domain Constraining
• Speeds up symbolic execution by lowering state explosion
• Focus only on the code which interacts with USB
• Example: apply constraints to the USB I/O SETUP to assume certain values

19

Symbol(SETUP[1]) == 6 // bRequest - Descriptor
Symbol(SETUP[2]) == 34 // wValueH - HID Report
Symbol(SETUP[3]) == 0 // wIndexL - Keyboard Index

Florida Institute for Cybersecurity (FICS) Research

Evaluation Targets

20

Florida Institute for Cybersecurity (FICS) Research

Evaluation Targets
• Target 1: BadUSB Phison

• Original firmware extracted from Phison
device and modified to inject keystrokes

• Displays both mass storage and
keyboard

• Size: 13KB

20

Florida Institute for Cybersecurity (FICS) Research

Evaluation Targets
• Target 1: BadUSB Phison

• Original firmware extracted from Phison
device and modified to inject keystrokes

• Displays both mass storage and
keyboard

• Size: 13KB

20

• Target 2: EzHID Firmware

• Generic HID firmware platform

• When triggered, injects keystrokes
from hard coded buffer

• Size: 3.4 KB

Florida Institute for Cybersecurity (FICS) Research

Evaluation Results — Query 1

21

Time to Target
(seconds) Fie (Config.) Fie (HID) angr (Config.) angr (HID)

Phison (Full) 384.40 43.49 s — —

Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

EzHID (Full) — — 10.76 24.04

EzHID (Q1+Domain) 9.45 9.87 5.18 11.13

Florida Institute for Cybersecurity (FICS) Research

Evaluation Results — Query 1
• Finding USB Specific Code

• Discover targets in the firmware and symbolically execute towards them
• Speedup achieved when using symbolic set algorithms domain knowledge

21

Time to Target
(seconds) Fie (Config.) Fie (HID) angr (Config.) angr (HID)

Phison (Full) 384.40 43.49 s — —

Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

EzHID (Full) — — 10.76 24.04

EzHID (Q1+Domain) 9.45 9.87 5.18 11.13

Florida Institute for Cybersecurity (FICS) Research

Evaluation Results — Query 1
• Finding USB Specific Code

• Discover targets in the firmware and symbolically execute towards them
• Speedup achieved when using symbolic set algorithms domain knowledge

21

Time to Target
(seconds) Fie (Config.) Fie (HID) angr (Config.) angr (HID)

Phison (Full) 384.40 43.49 s — —

Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

EzHID (Full) — — 10.76 24.04

EzHID (Q1+Domain) 9.45 9.87 5.18 11.13

50x

Florida Institute for Cybersecurity (FICS) Research

Evaluation Results — Query 1
• Finding USB Specific Code

• Discover targets in the firmware and symbolically execute towards them
• Speedup achieved when using symbolic set algorithms domain knowledge

21

Time to Target
(seconds) Fie (Config.) Fie (HID) angr (Config.) angr (HID)

Phison (Full) 384.40 43.49 s — —

Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

EzHID (Full) — — 10.76 24.04

EzHID (Q1+Domain) 9.45 9.87 5.18 11.13

7x

Florida Institute for Cybersecurity (FICS) Research

Evaluation Results — Query 1
• Finding USB Specific Code

• Discover targets in the firmware and symbolically execute towards them
• Speedup achieved when using symbolic set algorithms domain knowledge

21

Time to Target
(seconds) Fie (Config.) Fie (HID) angr (Config.) angr (HID)

Phison (Full) 384.40 43.49 s — —

Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

EzHID (Full) — — 10.76 24.04

EzHID (Q1+Domain) 9.45 9.87 5.18 11.13
2x

Florida Institute for Cybersecurity (FICS) Research

Evaluation Results — Query 1
• Finding USB Specific Code

• Discover targets in the firmware and symbolically execute towards them
• Speedup achieved when using symbolic set algorithms domain knowledge

21

Time to Target
(seconds) Fie (Config.) Fie (HID) angr (Config.) angr (HID)

Phison (Full) 384.40 43.49 s — —

Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

EzHID (Full) — — 10.76 24.04

EzHID (Q1+Domain) 9.45 9.87 5.18 11.13

Path Explosion

Florida Institute for Cybersecurity (FICS) Research

Semantic Analysis — Query 2

22

Query 2: Consistent Behavior

Florida Institute for Cybersecurity (FICS) Research

Semantic Analysis — Query 2

• How are USB endpoints used in the firmware image?

22

Query 2: Consistent Behavior

Florida Institute for Cybersecurity (FICS) Research

Semantic Analysis — Query 2

• How are USB endpoints used in the firmware image?
• Does this usage change throughout its execution?

22

Query 2: Consistent Behavior

Florida Institute for Cybersecurity (FICS) Research

Semantic Analysis — Query 2

• How are USB endpoints used in the firmware image?
• Does this usage change throughout its execution?
• Example:

• Keyboard device reads keyboard data from an I/O port then 
passes it to the USB output

• Suddenly it decides to inject hardcoded keystrokes

22

Query 2: Consistent Behavior

Florida Institute for Cybersecurity (FICS) Research

Inconsistent Flows

23

Fixed
Keystroke

Buffer
USB Output

Endpoint

Keyboard
Endpoint

Trigger

char inject[] = { ‘c’, ‘m’, ‘d’, ‘.’, ‘e’, ‘x’, ‘e’, …};

Florida Institute for Cybersecurity (FICS) Research

Inconsistent Flows

23

• Certain USB Endpoints
should NOT receive
constant data Fixed

Keystroke
Buffer

USB Output
Endpoint

Keyboard
Endpoint

Trigger

char inject[] = { ‘c’, ‘m’, ‘d’, ‘.’, ‘e’, ‘x’, ‘e’, …};

Florida Institute for Cybersecurity (FICS) Research

Inconsistent Flows

23

• Certain USB Endpoints
should NOT receive
constant data

• Record all memory
stores during symbolic
execution

Fixed
Keystroke

Buffer
USB Output

Endpoint

Keyboard
Endpoint

Trigger

char inject[] = { ‘c’, ‘m’, ‘d’, ‘.’, ‘e’, ‘x’, ‘e’, …};

Florida Institute for Cybersecurity (FICS) Research

Inconsistent Flows

23

• Certain USB Endpoints
should NOT receive
constant data

• Record all memory
stores during symbolic
execution

• Track symbolic vs.
concrete and writer
instruction addresses

Fixed
Keystroke

Buffer
USB Output

Endpoint

Keyboard
Endpoint

Trigger

char inject[] = { ‘c’, ‘m’, ‘d’, ‘.’, ‘e’, ‘x’, ‘e’, …};

Florida Institute for Cybersecurity (FICS) Research

Evaluation Results — Q2
• Discover all inconsistent

memory addresses
• Track when and where writes

take place

24

Table: EzHID Query 2 Results

• Execute for 30 minutes to
accumulate I/O port flows

Write Address Writers Symbolic Name Concrete Values

0x7e80 - 0x7e87 0x991, 0xa7e scancode[0-7] 0x0, 0xe2, 0x3b, 0x1b,
0x17, 0x08, 0x15, …

Florida Institute for Cybersecurity (FICS) Research

Fie versus angr

25

Florida Institute for Cybersecurity (FICS) Research

Fie versus angr
• Neither were easy to bring 8-bit architecture support to

• Both required lifters & architecture definitions
• angr had no interrupt support and less path heuristics
• Environment support (I/O) difficult

25

Florida Institute for Cybersecurity (FICS) Research

Fie versus angr
• Neither were easy to bring 8-bit architecture support to

• Both required lifters & architecture definitions
• angr had no interrupt support and less path heuristics
• Environment support (I/O) difficult

• Neither IR was ideal, but VEX IR is the better choice for binary-only
analysis

• VEX IR assumes bottom-up approach, no types, and no CFG
• LLVM IR comes from a top-down perspective

25

Florida Institute for Cybersecurity (FICS) Research

Limitations & Future Work
• Automatic device extraction is difficult and controller specific

• How do we scale FirmUSB to more firmware? 

• No trusted path to USB devices or any device attestation

• How can we trust automatically extracted firmware? 

• More work required to handle adversarial firmware (obfuscation)

• Adversarial firmwares may cause path explosion or prevent static analysis

26

Florida Institute for Cybersecurity (FICS) Research

Conclusion
• We develop an embedded firmware analysis framework

• Analyze 8051 USB firmware to determine intent

• Apply domain-informed symbolic execution to target specific code
paths and improve performance

• Side-by-side analysis of existing symbolic execution engines and the
ease of supporting a new architecture in each

27

Florida Institute for Cybersecurity (FICS) Research

 

Thanks!
Questions & Comments

grant.hernandez@ufl.edu

28

mailto:grant.hernandez@ufl.edu

Florida Institute for Cybersecurity (FICS) Research

Fighting back against BadUSB

29

Florida Institute for Cybersecurity (FICS) Research

Fighting back against BadUSB
• Prompting — GoodUSB (ACSAC’15), Allow or Deny for USB devices

29

Florida Institute for Cybersecurity (FICS) Research

Fighting back against BadUSB
• Prompting — GoodUSB (ACSAC’15), Allow or Deny for USB devices

 ✗ Requires users to make security sensitive decisions

29

Florida Institute for Cybersecurity (FICS) Research

Fighting back against BadUSB
• Prompting — GoodUSB (ACSAC’15), Allow or Deny for USB devices

 ✗ Requires users to make security sensitive decisions
• Sandboxing — Cinch (USENIX’16), Sandboxing the USB stack

29

Florida Institute for Cybersecurity (FICS) Research

Fighting back against BadUSB
• Prompting — GoodUSB (ACSAC’15), Allow or Deny for USB devices

 ✗ Requires users to make security sensitive decisions
• Sandboxing — Cinch (USENIX’16), Sandboxing the USB stack

✗ Requires an active virtual machine

29

Florida Institute for Cybersecurity (FICS) Research

Fighting back against BadUSB
• Prompting — GoodUSB (ACSAC’15), Allow or Deny for USB devices

 ✗ Requires users to make security sensitive decisions
• Sandboxing — Cinch (USENIX’16), Sandboxing the USB stack

✗ Requires an active virtual machine
• Firewalling — USBFILTER (USENIX’16), iptables for USB

29

Florida Institute for Cybersecurity (FICS) Research

Fighting back against BadUSB
• Prompting — GoodUSB (ACSAC’15), Allow or Deny for USB devices

 ✗ Requires users to make security sensitive decisions
• Sandboxing — Cinch (USENIX’16), Sandboxing the USB stack

✗ Requires an active virtual machine
• Firewalling — USBFILTER (USENIX’16), iptables for USB

✗ Requires complex polices and trusted hardware

29

Florida Institute for Cybersecurity (FICS) Research

Fighting back against BadUSB
• Prompting — GoodUSB (ACSAC’15), Allow or Deny for USB devices

 ✗ Requires users to make security sensitive decisions
• Sandboxing — Cinch (USENIX’16), Sandboxing the USB stack

✗ Requires an active virtual machine
• Firewalling — USBFILTER (USENIX’16), iptables for USB

✗ Requires complex polices and trusted hardware

29

These solutions all rely on runtime behavior

Florida Institute for Cybersecurity (FICS) Research

FirmUSB & Related Work

30

Host

Applications

OS Kernel

USB Drivers

USB Hub

Florida Institute for Cybersecurity (FICS) Research

FirmUSB & Related Work

30

USB Controller

Flash Chip

Host

Applications

OS Kernel

USB Drivers

USB Hub

Florida Institute for Cybersecurity (FICS) Research

FirmUSB & Related Work

30

Host

Applications

OS Kernel

USB Drivers
GoodUSB

USB Hub

Florida Institute for Cybersecurity (FICS) Research

FirmUSB & Related Work

30

Host

Applications

OS Kernel

USB Drivers
GoodUSB

Cinch
(virtualization)

USB Hub

Florida Institute for Cybersecurity (FICS) Research

FirmUSB & Related Work

30

Host

Applications

OS Kernel

USB Drivers
GoodUSB

Cinch
(virtualization)

USB Hub

USBFILTER

Florida Institute for Cybersecurity (FICS) Research

FirmUSB & Related Work

30

Host

Applications

OS Kernel

USB Drivers
GoodUSB

FirmUSB

Cinch
(virtualization)

USB Hub

USBFILTER

