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What about USB security?
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The USB specifications support additional capabilities for 
security, but original equipment manufacturers (OEM’s) 
decide whether or not to implement these capabilities 

in their products.

“

 — USB Implementers Forum, 2014

 “
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Operates completely within the USB Protocol.
No exploitation required and it is OS independent
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USB Descriptor Hierarchy
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Device Descriptor

Configuration
Descriptor

Interface 
Descriptor

Endpoint
Descriptor

Configuration
Descriptor

Endpoint
Descriptor

Interface 
Descriptor

Endpoint
Descriptor

• A device describes its functionality 
using descriptors

• These are communicated to the host as 
data payloads during enumeration
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USB Enumeration
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SetAddress( n )

USB ACK

GetDescriptor( Device )

VID: SanDisk, PID: Flash Drive

GetDescriptor( Interface )

Mass Storage
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USB Enumeration
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SetAddress( n )

USB ACK

GetDescriptor( Device )

VID: SanDisk, PID: Flash Drive

GetDescriptor( Interface )

Human Interface Device (HID)
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Enter FirmUSB
• Analyze USB firmware to determine intent 

using static and symbolic analysis
• Extend existing symbolic execution support 

(Fie and angr) to the 8051 CPU architecture
• Specialize and tailor symbolic engines via 

USB domain knowledge
• Develop a USB firmware semantic query 

engine which enables high-level analysis of 
firmware images

7

Intel 
8051

angr Fie (Klee)

Symbolic Execution 
Engines
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Where does FirmUSB fit?
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USB Controller

Flash Chip

Host

Applications

OS Kernel

USB Drivers

FirmUSB

USB Hub
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Symbolic Execution

unsigned short pincode = 0x????; 

if(pincode % 10 == 0) { 

  if(pincode > 1000) { 

    if((pincode >> 2) & 0x43) { 

      printf(“Correct!\n”); 

    } 

  } 

}

9

Which pin codes are valid?



Florida Institute for Cybersecurity (FICS) Research

Symbolic Execution

unsigned short pincode = 0x????; 

if(pincode % 10 == 0) { 

  if(pincode > 1000) { 

    if((pincode >> 2) & 0x43) { 

      printf(“Correct!\n”); 

    } 

  } 

}

9

Which pin codes are valid?

Use symbolic execution to 
find a program path that 

reaches ‘Correct’
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Symbolic Execution

unsigned short pincode = 0x????; 

if(pincode % 10 == 0) { 

  if(pincode > 1000) { 

    if((pincode >> 2) & 0x43) { 

      printf(“Correct!\n”); 

    } 

  } 

}
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Which pin codes are valid?

Use symbolic execution to 
find a program path that 

reaches ‘Correct’

Solve for pin using 
constraint solver to 

find valid pins
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Symbolic Execution (Cont.)
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Symbolic Execution (Cont.)

unsigned short pincode = 0x????; 

if(pincode % 10 == 0) { 

  if(pincode > 1000) { 

    if((pincode >> 2) & 0x43) { 

      printf(“Correct!\n”); 

    } 

  } 
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pincode = [20930, 19190, …]

Start

pin  % 10 == 0

Correct!Incorrect

pin  % 10 != 0

pin ≤ 1000

(pin >> 2) & 0x43 == 0

pin > 1000

(pin >> 2) & 0x43 != 0
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Intel 8051

11

8051
8-bit MCU

• Harvard Architecture
• 44 instructions
• 256 encodings
• 128 bytes of RAM
• 32 registers
• 64KB of code

CODE

0x0000

0xffff

XRAM RAM

SFR

0x00

0xff

0x80

0xff
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Why 8051?
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• The original BadUSB work hijacked a Phison 2251-03 firmware
• Many Phison USB controllers use 8051
• No symbolic execution support for angr or Fie 

1. Create Intermediate Representation lifter (VEX IR & LLVM IR)

2. Create architecture definition (Registers, memory map, I/O & interrupts)
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Supporting 8051
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int add() {
  unsigned char i, a = 0;

  for(i = 0; i < 100; i++)
    a += 1;

  return a;
}

C Source
Code

Compiler
7f 64 7e 00

0e 8f 05 ed

14 ff 70 f8

ff 8e 82 8f

83 22

Binary
Firmware

00 | ------ IMark(0x66, 1, 0) ------
05 | t24 = Get(R6)
06 | t23 = Add8(t24,0x01)
07 | Put(R6) = t23
08 | ------ IMark(0x67, 2, 0) ------
12 | t28 = i8051g_memory(0x5,0x00)
13 | STle(t28) = Get(R7)
14 | ------ IMark(0x69, 1, 0) ------
17 | t30 = Get(R5)
18 | ------ IMark(0x6a, 1, 0) ------
19 | t31 = Sub8(t30,0x01)
20 | PUT(A) = t31
21 | ------ IMark(0x6b, 1, 0) ------
22 | Put(R7) = t31
23 | PUT(ip) = 0x0000006c
24 | ------ IMark(0x6c, 2, 0) ------
25 | t34 = CmpNE8(t31,0x00)
26 | if (t34) { PUT(ip) = 0x66; }
NEXT: PUT(ip) = 0x0000006e;

VEX IR of 
block 0x66

Lifter
0x66: inc  R6
0x67: mov  (0x5), R7
0x69: mov  A, R5
0x6a: dec  A
0x6b: mov  R7, A
0x6c: jnz  $-8

0x6e: mov  R7, A
0x6f: mov  (0x82), R6
0x71: mov  (0x83), R7
0x73: ret

0x62: mov  R7, #0x64
0x64: mov  R6, #0x00

8051 ASM

Disasm.
CFG 

recovery

angr Fie

VEX Lifter

VEX IR

LLVM Lifter

Results

7f 64 7e 00

0e 8f 05 ed

14 ff 70 f8

ff 8e 82 8f

83 22

LLVM IR

Binary
Firmware
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~3000  
lines of C

~2000  
lines of Java
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• Supporting condition bit-codes was cumbersome and required 

many IR statements to be emitted
• Overlapping RAM, XRAM, and CODE regions (address 0x0) 
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Typical microcontroller patterns are  
difficult to support with LLVM and VEX
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USB Signatures
• Use USB domain knowledge to find key parts of firmware images
• Find code references (XREFs) to these addresses and feed them as targets for 

the symbolic execution stage

15

Pattern Name Byte Pattern Data Address Cross-Reference

DEVICE_DESC 12 01 00 ?? 00 0x302b 0xb89

CONFIG_DESC 09 02 ?? ?? ?? 01 00 0x303d 0xbd5

HID_REPORT 05 01 09 06 A1 0x3084 0xbf1

Table: Found patterns in the Phison firmware.
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USB Signatures
• Use USB domain knowledge to find key parts of firmware images
• Find code references (XREFs) to these addresses and feed them as targets for 

the symbolic execution stage
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Pattern Name Byte Pattern Data Address Cross-Reference

DEVICE_DESC 12 01 00 ?? 00 0x302b 0xb89

CONFIG_DESC 09 02 ?? ?? ?? 01 00 0x303d 0xbd5

HID_REPORT 05 01 09 06 A1 0x3084 0xbf1

Table: Found patterns in the Phison firmware.

[Length] [Type] […]
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Query Engine & Semantic Analysis
• Employ static and symbolic analysis to answer questions about the firmware
• Write in Python (for angr) or C++ (for Fie)
• Example query: 

1. Recover CFG, find USB signatures statically

2. Symbolically execute towards targets

3. For each found target, print the path condition

16

$ ./firmusb —i firmware1.bin -q query-type -o fw1.log
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Semantic Analysis — Query 1

1. Determine the USB type through a combination of static and symbolic analysis

2. Find USB descriptor signatures and determine referencing code addresses

3. Symbolically execute to these ‘targets’ and determine path conditions

17

Query 1: The Claimed Identity 
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Symbolic Set Algorithm

• Determine a more 
minimal set of symbolic 
variables 

• Relies on knowledge 
of 8051 interrupts

• Greatly speeds up 
symbolic execution vs. 
fully-symbolic 
(less state explosion)
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USB Domain Constraining
• Speeds up symbolic execution by lowering state explosion
• Focus only on the code which interacts with USB
• Example: apply constraints to the USB I/O SETUP to assume certain values

19

Symbol(SETUP[1]) == 6    // bRequest - Descriptor 
Symbol(SETUP[2]) == 34   // wValueH  - HID Report 
Symbol(SETUP[3]) == 0    // wIndexL  - Keyboard Index
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• Target 2: EzHID Firmware

• Generic HID firmware platform

• When triggered, injects keystrokes 
from hard coded buffer

• Size: 3.4 KB



Florida Institute for Cybersecurity (FICS) Research

Evaluation Results — Query 1
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Time to Target 
(seconds) Fie (Config.) Fie (HID) angr (Config.) angr (HID)

Phison (Full) 384.40 43.49 s — —

Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

EzHID (Full) — — 10.76 24.04

EzHID (Q1+Domain) 9.45 9.87 5.18 11.13
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• Speedup achieved when using symbolic set algorithms domain knowledge
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Evaluation Results — Query 1
• Finding USB Specific Code 

• Discover targets in the firmware and symbolically execute towards them
• Speedup achieved when using symbolic set algorithms domain knowledge

21
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Evaluation Results — Query 1
• Finding USB Specific Code 

• Discover targets in the firmware and symbolically execute towards them
• Speedup achieved when using symbolic set algorithms domain knowledge

21

Time to Target 
(seconds) Fie (Config.) Fie (HID) angr (Config.) angr (HID)
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Evaluation Results — Query 1
• Finding USB Specific Code 

• Discover targets in the firmware and symbolically execute towards them
• Speedup achieved when using symbolic set algorithms domain knowledge

21

Time to Target 
(seconds) Fie (Config.) Fie (HID) angr (Config.) angr (HID)

Phison (Full) 384.40 43.49 s — —

Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

EzHID (Full) — — 10.76 24.04

EzHID (Q1+Domain) 9.45 9.87 5.18 11.13

Path Explosion
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Semantic Analysis — Query 2
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Query 2: Consistent Behavior 
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• How are USB endpoints used in the firmware image?
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Semantic Analysis — Query 2

• How are USB endpoints used in the firmware image?
• Does this usage change throughout its execution?
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Semantic Analysis — Query 2

• How are USB endpoints used in the firmware image?
• Does this usage change throughout its execution?
• Example: 

• Keyboard device reads keyboard data from an I/O port then 
passes it to the USB output

• Suddenly it decides to inject hardcoded keystrokes

22

Query 2: Consistent Behavior 
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Inconsistent Flows

23

Fixed
Keystroke

Buffer
USB Output

Endpoint

Keyboard
Endpoint

Trigger

char inject[] = { ‘c’, ‘m’, ‘d’, ‘.’, ‘e’, ‘x’, ‘e’, …};
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• Certain USB Endpoints 
should NOT receive 
constant data Fixed

Keystroke
Buffer

USB Output
Endpoint

Keyboard
Endpoint
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Inconsistent Flows

23

• Certain USB Endpoints 
should NOT receive 
constant data

• Record all memory 
stores during symbolic 
execution

Fixed
Keystroke

Buffer
USB Output

Endpoint

Keyboard
Endpoint

Trigger

char inject[] = { ‘c’, ‘m’, ‘d’, ‘.’, ‘e’, ‘x’, ‘e’, …};
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Inconsistent Flows

23

• Certain USB Endpoints 
should NOT receive 
constant data

• Record all memory 
stores during symbolic 
execution

• Track symbolic vs. 
concrete and writer 
instruction addresses

Fixed
Keystroke

Buffer
USB Output

Endpoint

Keyboard
Endpoint

Trigger

char inject[] = { ‘c’, ‘m’, ‘d’, ‘.’, ‘e’, ‘x’, ‘e’, …};
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Evaluation Results — Q2
• Discover all inconsistent 

memory addresses
• Track when and where writes 

take place

24

Table: EzHID Query 2 Results

• Execute for 30 minutes to 
accumulate I/O port flows

Write Address Writers Symbolic Name Concrete Values

0x7e80 - 0x7e87 0x991, 0xa7e scancode[0-7] 0x0, 0xe2, 0x3b, 0x1b, 
0x17, 0x08, 0x15, …
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Fie versus angr
• Neither were easy to bring 8-bit architecture support to 

• Both required lifters & architecture definitions
• angr had no interrupt support and less path heuristics
• Environment support (I/O) difficult
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Fie versus angr
• Neither were easy to bring 8-bit architecture support to 

• Both required lifters & architecture definitions
• angr had no interrupt support and less path heuristics
• Environment support (I/O) difficult

• Neither IR was ideal, but VEX IR is the better choice for binary-only 
analysis 

• VEX IR assumes bottom-up approach, no types, and no CFG
• LLVM IR comes from a top-down perspective
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Limitations & Future Work
• Automatic device extraction is difficult and controller specific 

• How do we scale FirmUSB to more firmware? 

• No trusted path to USB devices or any device attestation 

• How can we trust automatically extracted firmware? 

• More work required to handle adversarial firmware (obfuscation) 

• Adversarial firmwares may cause path explosion or prevent static analysis
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Conclusion
• We develop an embedded firmware analysis framework

• Analyze 8051 USB firmware to determine intent

• Apply domain-informed symbolic execution to target specific code 
paths and improve performance

• Side-by-side analysis of existing symbolic execution engines and the 
ease of supporting a new architecture in each
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Thanks!
Questions & Comments

grant.hernandez@ufl.edu
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