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VWhat about USB security?

¢ € The USR specifications support additional capabilities for
security, but original equipment manufacturers (OEM’s)

decide whether or not to implement these capabilities
in their products.??

— USB Implementers Forum, 2014
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- A reprogrammed USB device with modified functionality
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- A reprogrammed USB device with modified functionality
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- BadUSB exploits trust in physical device appearance

- Example: USB Flash drive reflashed to become a
keyboard or network card

* Enables keystroke injection to quickly backdoor a
system or hijack all network connections
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VWhat 1s BaaUSB! UF
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- A reprogrammed USB device with modified functionality

PO91533FA000021A

- BadUSB exploits trust in physical device appearance

- Example: USB Flash drive reflashed to become a
keyboard or network card

* Enables keystroke injection to quickly backdoor a
system or hijack all network connections

Operates completely within the USB Protocol.
No exploitation required and it is OS independent
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USB Descriptor Hierarchy Uk
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Device Descriptor

Configuration Configuration
Descriptor Descriptor
I |
|
r—-—=— == = ———
+ + Interface Interface
Descriptor Descriptor

» A device describes its functionality DE“dP_"Tt DE"dP_OTt
eSCriptor eSCriptor

using descriptors
Endpoint
Descriptor

« [hese are communicated to the host as
data payloads during enumeration
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USB Enumeration
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USB Enumeration

.\/

SetAddress(n)
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USB Enumeration

.\/

SetAddress(n)

USB ACK
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USB Enumeration

SetAddress(n)

GetDescriptor( Device )
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USB Enumeration

SetAddress(n)

GetDescriptor( Device )

VID: SanDisk, PID: Flash Drive
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USB Enumeration

SetAddress(n)

GetDescriptor( Device )

VID: SanDisk, PID: Flash Drive

GetDescriptor( /nterface )

Florida Institute for Cybersecurity (FICS) Research



USB Enumeration

SetAddress(n)

GetDescriptor( Device )

VID: SanDisk, PID: Flash Drive

GetDescriptor( /nterface )

Mass Storage
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USB Enumeration

SetAddress(n)

GetDescriptor( Device )

VID: SanDisk, PID: Flash Drive

GetDescriptor( /nterface )

Human Interface Device (HID)
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Enter FirmUSB

Intel + Analyze USB firmware to determine intent

S051 .-%b using static and symbolic analysis

angr Fie (Klee)

Symbolic Execution
Engines
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Enter FirmUSB

FLORIDA

Intel + Analyze USB firmware to determine intent

using static and symbolic analysis

8051 ‘%’
@ KA

angr Fie (Klee)

» Extend existing symbolic execution su

Symbolic Execution
Engines

D

DOrt

(Fie and angr) to the 8051 CPU architecture
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Enter FirmUSB

* Analyze USB firmware to ¢
using static anc

Intel
8051

//

angr Fie (Klee)

Symbolic Execution

Engines

Extenc
(Fie anc

¢ S
USB ¢

heclalize anc

existing symbolic execution sup
angr) to the 8051 CPU archrtecture
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etermine Intent

symbolic analysis

DOrt

tallor symbolic engines via

omain knowledge
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Enter FirmUSB

Intel + Analyze USB f
using static anc

8051 "%’

* Extenc
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angr Fie (Klee) . Develo

Symbolic Execution
Engines

"mware 10 C
symbolic analysis

etermine Intent

existing symbolic execution support

b a USB fi
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firmware images
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rmware semantic c
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VWhere does FirmUSB fit! UF
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Symbolic Execution

Which pin codes are valid?

unsigned short pincode = Ox?72?777;

1f(pincode % 10 == 0) {
if(pincode > 1000) {
1f((pincode >> 2) & 0x43) {
printf(“Correct!\n”);
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Symbolic Execution

Which pin codes are valid?

unsigned short pincode = Ox?72?777;

”Fii”?"ded% 161;;@?){{ Use symbolic execution to

if(pincode > .

f((pincode >> 2) & Ox43) { find a program path that
orintf(“Correct!\n”): reaches ‘Correct’

;
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Symbolic Execution

Which pin codes are valid?

unsigned short pincode = Ox?72?777;

”Fii”?"ded% 1@1;;9‘)”{{ Use symbolic execution to
if(pincode > .
f((pincode >> 2) & Ox43) { find a program path that
orintf(“Correct!\n”): reaches ‘Correct’
}
) Solve for pin using
} constraint solver to

find valid pins
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Symbolic Execution (Cont.)

Start
unsigned short pincode = Ox?72?777; +

FLORIDA

pin %10 1=10 pin % 10 == 0
if(pincode % 10 == @) { / L — V |

1f(pincode > 1000) { K pin < 1000 pin > 1000

if((pincode >> 2) & 0x43) { L V

printf(“Correct!\n”); (pin >> 2) & 0x43 == 0 (pin >> 2) & 0x43 1= 0
\ \ ) _ )
oy o
j Incorrect Correct!
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Symbolic Execution (Cont.)

unsigned short pincode = Ox?72?777;

1f(pincode % 10 == 0) {
if(pincode > 1000) {
1f((pincode >> 2) & 0x43) {
printf(“Correct!\n”);

a

pin %10 1=10

FLORIDA

J/
1 ~

( |

pin < 1000

pin % 10 == 0

i

J /
) (

pin > 1000

.

(pin >> 2) & 0x43 == 0

v

\.

'

Incorrect

(pin >> 2) & 0x43 '=0

'

Correct!
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Symbolic Execution (Cont.)

Start
unsigned short pincode = Ox?72?777;

IIIIIIIIII of

FLORIDA

1f(pincode % 10 == 0) {

1f(pincode > 1000) { K pin < 1000 pin > 1000

if((pincode >> 2) & 0x43) { L V

printf(“Correct!\n”); (pin >> 2) & 0x43 == 0 (pin >> 2) & 0x43 1= 0
\ _ ) _ )
oy o
j Incorrect Correct!
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Symbolic Execution (Cont.)

Start
unsigned short pincode = Ox?72?777; +

pin %10 1=0

if(pincode % 10 == @) { L
(pincose » 1000
1T ((pincode >> 2) & 0Ox43) {

printf(“Correct!\n”); (pin >> 2) & 0x43 == 0
\ L _l_ )
; Incorrect

FLORIDA

pin % 10 == 0

J

r

\.

(pin >> 2) & 0x43 '=0

'

Correct!
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Symbolic Execution (Cont.) Uk

FLORIDA
Start |
unsigned short pincode = Ox?27?7; + |
| pin % 10 == 0 |
if(pincode % 10 == 0) { { J
if(pincode > 1000) { , pin > 1000
1T ((pincode >> 2) & 0Ox43) {

printf(“Correct!\n”); (pin >> 2) & 0x43 == 0 (pin >> 2) & 0x43 1= 0

) ¥
} Incorrect Correct!
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Symbolic Execution (Cont.)

Start
unsigned short pincode = Ox?72?777; +

FLORIDA

pin %10 1=10 pin % 10 == 0
if(pincode % 10 == @) { / L — V |

1f(pincode > 1000) { K pin < 1000 pin > 1000

if((pincode >> 2) & 0x43) { L V

printf(“Correct!\n”); (pin >> 2) & 0x43 == 0 (pin >> 2) & 0x43 1= 0

\ _ _l_ ) _
j Incorrect
} . )

pincode = [20930, 19190, ...]
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Intel 805 |

e NONNONNN.
“Sni(riglgcg:ig M:zr%fc:omputers E g
User’s Manual — ]
= 8-bit MCU B
— ]
- 1
Toooooooo
Ox0000
CODE | XRAM
OXTfff

Harvard Architecture

44 instructions
256 encodings

128 bytes of RAM

32 registers

64KB of code
Ox00
RAM
SFR
Oxff

Ox380

Oxff
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"%'o " USB has become so commonplace that we rarely worry about its security
black hat < implications. USB sticks undergo the occasional virus scan, but we consider USB to

n—- I BADUSB - ON ACCESSORIES THAT TURN EVIL

I—l SA E D q . be otherwise perfectly safe - until now.
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» [he original BadUSB work hijacked a Phison 225 1-03 firmware
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» [he original BadUSB work hijacked a Phison 225 1-03 firmware

Many Phison USB controllers use 805 |
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black hat . implications. USB sticks undergo the occasional virus scan, but we consider USB to
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Why 80517 UF
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» [he original BadUSB work hijacked a Phison 225 1-03 firmware

» Many Phison USB controllers use 805 |

* No symbolic execution support for angr or Fie

|, Create Intermediate Representation lifter (VEX IR & LLVM IR)

2. Create architecture definition (Registers, memory map, /O & interrupts)

’ - BADUSB - ON ACCESSORIES THAT TURN EVIL
‘ ’ ST USB has become so commonplace that we rarely worry about its security

v ¢' s - . '~ "‘..‘.::,, - P
> s E * vf ."":"v" 2

| ac " implications. USB sticks undergo the occasional virus scan, but we consider USB to
-

l—| SA E D q‘-- be otherwise perfectly safe - until now.
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7f 64 7e 00 .
: . Compiler | AN
Oe 8f 05 ed t add -
) ) Blnary munsigrﬁéd{char i, a = 0; /T 64 7e 00 Bmary
14 ff 70 f8 ; : ! :
Firmware Pe 8f 05 ed | Firmware
ff 8e 82 8f for(i = 0; i < 100; i++)
83 22 a += 1; —»( 14 ff 70 f8 |
\
/ C Source ff 8e 82 8f .
return a; | Disasm.
} Code 83 22 |
22 ) cre
00 | ------ IMark (0x66, 1, Q) ------ | recovery
05 | t24 = Get (R6)
06 | t23 = Add8(t24,0x01)
07 Put (R6) = t23 Ox62: mov R7, #0x64
VEX IR [ VM IR 08 | ------ IMark (Ox67, 2, 0) ------ Ox64: mov R6, #Ox00
12 t28 = 18051g memory (Ox5,0x00) v
13 | STle(t28) = Get(R7) —— ~
14 | ------ IMark (0x69, 1, 0) ------ Ox66: inc  R6
- X p X 17 t30 = Get(R5) @X67 mov (0x5), R7
. 18 | ------ IMark (0x6a, 1, 0) ------ Ox63: mov A, R>
angr Fie 19 | t31 = Sub8(t30,0x01) Ox6a: dec A
70 PUT(A) = t31 Ox6b: mOV R7, A
- g - g 21 | ------ IMark (Ox6b, 1, 0) ------ \Ox6¢c: jnz $-8 Y
22 | Put(R7) = t31 \J
23 | PUT(ip) = Ox0000006C (Gxce: mov R7. A ™
vl 24 | ------ IMark(Ox6c, 2, 0) ------ I ’
~— ) 25 | t34 = CmpNE8(t31,0x00) VEX IR of O o R
26 | if (t34) { PUT(ip) = Ox66: } | ’
R It NEXT: PUT(ip) = Ox0000006e; block 0x66 \@XB' ret Y,
esults
8051 ASM
S— A
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Supporting 305 | Ul

UNIVERSITY of

FLORIDA

/T 64 7e 00

. . Compiler | * .
6e 8f 05 ed | Bjnary It add() 1 o P 7f 64 7e @% Binary
14 ff 70 f8 unsigned char 1, a =

" @; .
o gy Firmware it = os i< 100 1en 0e 8f 05 od | Firmware
or(i = 0; i < -4+
’ ’
83 22 a += 1: —> n‘—> 14 ff 70 f8 ~.

C Source ff 8e 82 8f

return a: Il Disasm.

) Code 83 22 | CFG
l

00 | ------ IMark (0x66, 1, @) ------ | recovery
05 | t24 = Get(R6)
06 | t23 = Add8(t24,0x01)
07 Put (R6) = t23 , Ox62: mov R7, #0O0x64
e8 | ------ IMark (Ox67, 2, @) ------ L/ﬂ'er [@x64: mov R6, #@x@@]
12 t28 = 18051g memory (Ox5,0x00) v
13 | STle(t28) = Get(R7) T = ~
14 | ------ IMark (0x69, 1, 0) ------ @X67; 1nc oxS) R
17 | t30 = Get(RS) x67: mov (0x>5),
18 | ------ IMark(0x6a, 1, Q) ------ <+ «— 9x69: mov A, RS

Ox6a: dec A

19 t31 = Sub8(t30,0x01) Ox6b: mov R7. A

20 PUT(A) = t31

21 | —----- IMark (0x6b, 1, @) ------ \Ox6c: jnz $-8 Y
22 | Put(R7) = t31 _ L .\
23 | PUT(ip) = 0x0000006C P ——

vl 24 | ------ IMark (®x6c, 2, 0) ------ I ’

~— ) 25 | t34 = CmpNE8(t31,0x00) VEX IR of O o R
26 | if (t34) { PUT(ip) = 0x66: } : ’
NEXT: PUT(ip) = 0x0000006e: block Ox66  |9x73: ret y

Results 8051 ASM

S~ -
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* Supporting condition bit-codes was cumbersome and requirec
many IR statements to be emittec
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Lifting Challenges
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antmg Challenges

upporting condition brt-codes was cumbersome and reguirec
mary IR statements to be emittec

+ Overlapping RAM, XRAM, and CODE regions (address 0x0)

Typical microcontroller patterns are
difficult to support with LLVM and VEX

Florida Institute for Cybersecurity (FICS) Researc h



USB Signatures

» Use USB ¢

UF

UNIVERSI

FLORIDA

omaln knowledge to find key parts of firmware images

* Find code references (XREFs) to these addresses and feed them as targets for
the symbolic execution stage
Pattern Name Byte Pattern Data Address Cross-Reference
DEVICE_DESC 12 01 00 2?2 00 0x302b 0xb89
CONFIG_DESC 09 02 2?2 22 2? 01 00 0x303d 0xbd5
HID_REPORT 05 01 09 06 Al 0x3084 0xbf1l

Table: Found patterns in the Phison firmware.
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USB Signatures UF

+ Use USB domain knowledge to find key parts of firmware images

* FINnd coc

e references (XREFs) to these ac

the symbolic execution stage

[Length] [Type] [...]

Pattern Name Byte Pattern

C

resses and feec

Data Address

them as targets for

Cross-Reference

DEVICE_DESC /12 01\00 2?2 00 0x302b 0xb89
CONFIG_DESC \09 02/?2? ?2? 2?2 01 00 0x303d 0xbd5
HID_REPORT 05 01 09 06 Al 0x3084 Oxbfl

Table: Found patterns in the Phison firmware.
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» Employ static and symbolic analysis to answer questions about the firmware
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Query Engine & Semantic Analysis

» Employ static and symbolic analysis to answer questions about the firmware

* Write in Python (for angr) or C++ (for Fie)
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Query Engine & Semantic Analysis

» Employ static and symbolic analysis to answer questions about the firmware

* Write in Python (for angr) or C++ (for Fie)

- Example query:

|, Recover CFG, find USB signatures statically

2. Symbolically execute towards targets

3. For each found target, print the path condition

$ ./firmusb —i firmwarel.bin —-gq query-type -o fwl.log

Florida Institute for Cybersecurity (FICS) Researc h
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Semantic Analysis — Query |

Query |: The Claimed ldentity
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Semantic Analysis — Query |

Query |: The Claimed ldentity

. Determine the USB ty

be through a combination of static anc

symbolic analysis
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Semantic Analysis — Query |

Query |: The Claimed ldentity

|, Determine the USB type through a combination of static and symbolic analysis

2. Find USB descriptor sighatures and determine referencing code addresses
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Semantic Analysis — Query |

Query |: The Claimed ldentity

|, Determine the USB type through a combination of static and symbolic analysis

2. Find USB descriptor sighatures and determine referencing code addresses

3. Symbolically execute to these ‘targets’ and determine path condrtions

Florida Institute for Cybersecurity (FICS) Research
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@ymbolicLocaﬁE

Done Next

F = Interrupts.next()

@n SymbolicLE

!

Hoolk.MemLoad

SymbolicLocs += [locations] l

A

Symbolic Execution on
Firmware with only F

Hook.MemStore
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Symbolic Set Algorithm Ur
Determine a more @""‘”""‘“@

FLORIDA
minimal set of symbolic
variables Done Next

@n Symboli@

F = Interrupts.next()

!

Hoolk.MemLoad

SymbolicLocs += [locations] l
A

Symbolic Execution on
Firmware with only F

Hook.MemStore
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Symbolic Set Algorithm Ul
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Determine a more @Y"‘b""c"“@

minimal set of symbolic
variables Done Next

F = Interrupts.next()

* Relies on knowledge i

of 8051 Interrupts @n b @ i

Hoolk.MemLoad

SymbolicLocs += [locations] l
A

Symbolic Execution on
Firmware with only F

Hook.MemStore
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Symbolic Set Algorithm Ul

Determine a more @Y"‘b""c"“@

minimal set of symbolic
variables Done Next

F = Interrupts.next()

* Relies on knowledge i

of 8051 Interrupts @n - @ i

Hoolk.MemLoad

) Greatlyl Speeds Up SymbolicLocs += [locations] l
symbolic execution vs. X
fu ‘y-symbonc Hook.MemStore

(less state explosion) Symbolic Execution on
Firmware with only F
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USB Domain Constraining

Speeds up symbolic execution by lowering state explosion

* Focus only on the code which interacts with USB

- Example: apply constraints to the USB /O SETUP to assume certain values

Symbol (SETUP[1]) == // bRequest — Descriptor
Symbol (SETUP|[2]) == 34 // wValueH - HID Report
Symbol (SETUP[3]) == // wIndexL - Keyboard Index

Florida Institute for Cybersecurity (FICS) Researc h



USB Domain Constraining

» Speeds up symbolic execution by lowering state ex

* Focus only on the code which interacts with USB

- Example: apply constraints to the USB I/O SETUP

ymbol (SETUP[1"
Symbol (SETUP[2]|) == 34) // wValueH
Symbol (SETUP |3 // wIndexL

Florida Institute for Cybersecurity (FICS) Researc h
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to assume certain values

// bRequest - Descriptor

— HID Report
— Keyboard Index



USB Domain Constraining

* Speeds up symbolic execution by lowering state explosion

* Focus only on the code which interacts with USB

- Example: a

D

ymbol (SETUP[1"
Symbol (SETUP[2]) == 34
Symbol (SETUP[3’

bly constraints to the USB /O SETUP to assume certain values

// bRequest - Descriptor
// wValueH - HID Report
// wlndexL - Keyboard Index
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cvaluation largets

UF
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» Jarget |: BadUSB Phison

» Original firmware extracted from

“hison
device and mocC

fied to inject keystrokes

» Displays

both mass storage and
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« Size: | 3KB
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cvaluation largets

UF

FLORIDA
- Jlarget |: BadUSB Phison » larget 2: EzHID Firmware

» Original firmware extracted from Phison »  Generic HID firmware platform

device and modified to Inject keystrokes . -

*  When triggered, Injects keystrokes

»  Displays both mass storage and from hard coded bufter

Atk .+ Size: 34 KB
+ Size: | 3KB

f‘/ » ’ -
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tvaluation Results — Query | Ul
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Time to Target Fie (Config.) Fie (HID) angr (Config.) angr (HID)

(seconds)
Phison (Full) 384.40 43.49 s — —

Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

EzHID (Full) _ _ 10.76 24.04

EzHID (Q1+Domain) 0.45 0.87 5.18 11.13
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tvaluation Results — Query | Ul
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* Finding USB Specific Code

» Discover targets In the firmware and symbolically execute towards them

* Speedup achieved when using symbolic set algorithms domain knowledge

Time to Target
(seconds)

Phison (Full) 384.40 43.49 s — —
Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

Fie (Config.) Fie (HID) angr (Config.) angr (HID)

EzHID (Full) _ _ 10.76 24.04

EzHID (Q1+Domain) 0.45 0.87 5.18 11.13
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tvaluation Results — Query |

* Finding USB Specific Code

» Discover targets In the firmware anc

S5

heedup achlevec

Time to Target
(seconds)

Phison (Full)

Phison (Q1+Domain)

EzHID (Full)

EzHID (Q1+Domain)

when using symbolic set algorithms ¢

Fie (Config.)

384.40

STXGID)

43.49 s

symbolically execute towarc

angr (Config.)

UF

UNIVERSITY of

FLORIDA

s them

omain knowledge

angr (HID)

/.68 5.64 s 70.28 70.09
— — 10.76 24.04
9.45 9.87 5.18 11.13
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tvaluation Results — Query | Ul

UNIVERSITY of
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* Finding USB Specific Code

» Discover targets In the firmware and symbolically execute towards them

* Speedup achieved when using symbolic set algorithms domain knowledge

Time to Target
(seconds)

Phison (Full) 384.40 43.49 s
Phison (Q1+Domain) /.68 5.64 s

Fie (Config.) Fie (HID) angr (Config.) angr (HID)

X

70.28 70.09
EzHID (Full) _ _ 10.76 24.04

EzHID (Q1+Domain) 0.45 0.87 5.18 11.13
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* Finding USB Specific Code

» Discover targets In the firmware and symbolically execute towards them

* Speedup achieved when using symbolic set algorithms domain knowledge

Time to Target
(seconds)

Phison (Full) 384.40 43.49 s — —
Phison (Q1+Domain) 7.68 5.64 s 70.28 70.09

Fie (Config.) Fie (HID) angr (Config.) angr (HID)

EzHID (Full) _ _ 10.76 24.04

EzHID (Q1+Domain) 0.45 0.87 5.18 11.13
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* Finding USB Specific Code

» Discover targets In the firmware and symbolically execute towards them

* Speedup achieved when using symbolic set algorithms domain knowledge

Path Explosion

Time to Target
(seconds)

Phison (Full) —
Phison (Q1+Domain) 644 70.09

Fie (Config.) Fie (H'2) «ngr (Con'ig.) angr (HID)

EzHID (Full) 24.04
EzHID (Q1+Domain) . . 11.13
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Semantic Analysis — Query 2

Query 2: Consistent Behavior
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Semantic Analysis — Query 2

Query 2: Consistent Behavior

- How are USB endpoints used in the firmware image!
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Semantic Analysis — Query 2

Query 2: Consistent Behavior

How are USB endpoints used In the firmware image!

Does this usage change throughout Its execution?
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Semantic Analysis — Query 2

How are USB enc

NDOINTS Usec

Query 2: Consistent Behavior

N the firmware image!?

Does this usage change throughout Its execution?

- Example:

Keyboard device reads keyboarc
passes It to the USB output

« Sudc

enly It C

eciC

Florida Institute for Cybersecurity (FICS) Research
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INnconsistent Flows

char inectl] ={'c’, 'm’, ‘'d’, ", ‘e, X, ‘e, ...};
/ \ Trigger . A I >
Fixed 99
Keystroke /
Buffer

\_ /
( Keyboard

USB Output

Endpoint /

Endpoint

Florida Institute for Cybersecurity (FICS) Research



INnconsistent Flows

char inectl] ={'c’, 'm’, ‘'d’, ", ‘e, X, ‘e, ...};

+ Certain USB _ndpomts

should NOT recelve |
constant data / Fixed \ 'I:/lgger ._A ; >

Keystroke

Buffer
\_ /
( Keyboard

USB Output

Endpoint /

Endpoint
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INnconsistent Flows

'c’,'m’, 'd’, ", 'e’, ', e, ... 1

char inject||

+ Certain USB _ndpomts

should NOT recelve |
constant data / Fixed \ 'I:/lgger ._A ; >

Keystroke

Record all memory Buffer

stores during symbolic \_
Keyboard
Endpoint

USB Output

Endpoint /

execution
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Inconsistent Flows UF

FLORIDA

char inject] =1{'c’, 'm’, ‘d’, ", ‘e, X, ‘e, ..}

+ Certain USB Endpoints

should NOT recelve |
constant data / Fixed \ 'I:/lgger ._A ; )

Keystroke
Record all memory Buffer \
stores during symbolic \_ ) USB Output
execution Endpoint /
* Irack symbolic vs, Keyboard
concrete and writer Endpoint

iNstruction addresses
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Fvaluation Results — Q2

 Discover all inconsistent + Execute for 30 minutes to
memory addresses accumulate /O port flows

* Jrack when and where writes
take place

Write Address Writers Symbolic Name Concrete Values

Ox0, Oxe2, Ox3b, Ox1Db,

Ox7e80 - Ox7e87  0x991, Oxa7e scancode|0-7] 0x17 Ox08. Ox15

Table: EzHID Query 2 Results
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Fle versus angr
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Fle versus angr

* Neither were easy to bring 8-bit architecture support to

« Both required lifters & architecture definitions

* angr had no interrupt support and less path heuristics

* Environment support (I/O) difficult
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Fle versus angr

* Neither were easy to bring 8-bit architecture support to

Both required lifters & architecture definrtions

* angr had no interrupt support and less path heuristics

Environment support (I/O) difficult

* Neither IR was ideal, but VEX IR is the better choice for binary-only
analysis

+ VEX IR assumes bottom-up approach, no types, and no CFG

LLVM IR comes from a top-down perspective
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L imitations & Future VWork

- Automatic device extraction is difficult and controller specific

« How do we scale FirmUSB to more firmware?

* No trusted path to USB devices or any device attestation

* How can we trust automatically extractec

firmware?

* More work required to handle adversarial firmware (obfuscation)

» Adversarial firmwares may cause

Florida Institute for Cybersecurity (FICS) Research
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Conclusion UF

UNIVERSITY

FLORIDA

* We develop an embedded firmware analysis framework

* Analyze 8051 USB firmware to determine intent

- Apply domain-informed symbolic execution to target specific code
paths and iImprove performance

» Side-by-side analysis of existing symbolic execution engines and the
ease of supporting a new architecture in each
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Questions & Comments

rant.hernandez@ufl.edu
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* Prompting — GoodUSB (ACSAC'|5), Allow or Deny for USB devices
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Fighting back against BaaUSB

* Prompting — GoodUSB (ACSAC'|5), Allow or Deny for USB ¢

X Requires users to make security sensitive decisions

 Sandboxing — Cinch (USENIX'|6), Sandboxing the USB stack

X Requires an active virtual machine

* Firewalling — USBFILTER (USENIX'16), iptables for USB

X Requires complex polices and trusted hardware
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Fighting back against BaaUSB

* Prompting — GoodUSB (ACSAC'|5), Allow or Deny for USB ¢

X Requires users to make security sensitive decisions

 Sandboxing — Cinch (USENIX'|6), Sandboxing the USB stack

X Requires an active virtual machine

* Firewalling — USBFILTER (USENIX'16), iptables for USB

X Requires complex polices and trusted hardware

These solutions all rely on runtime behavior
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FIrmUSB & Related VWork UF
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USB Controller

PO91533FA000021A

" C6

Flash Chip
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